Независимые события складываются. Теорема сложения вероятностей совместных событий

Тип занятия: изучение нового материала.
Учебно-воспитательные задачи:
- дать понятие о случайном событии, вероятности события;
- научить вычислять вероятности события; вероятности случайных событий по классическому определению;
- научить применять теоремы сложения и умножения вероятностей для решения задач;
- продолжать формировать интерес к математике посредством решения задач с применением классического определения вероятности для непосредственного подсчета вероятностей явлений;
- прививать интерес к математике, используя исторический материал;
- воспитывать осознанное отношение к процессу обучения, прививать чувство ответственности за качество знаний, осуществлять самоконтроль за процессом решения и оформления упражнений.

Обеспечение занятия:
- карточки-задания для индивидуального опроса;
- карточки-задания для проверочной работы;
- презентация.

Студент должен знать:
- определения и формулы числа перестановок, размещений и сочетаний;
- классическое определение вероятности;
- определения суммы событий, произведения событий; формулировки и формулы теорем сложения и умножения вероятностей.

Студент должен уметь:
- вычислять перестановки, размещения и сочетания;
- вычислять вероятность события используя классическое определение и формулы комбинаторики;
- решать задачи на применение теорем сложения и умножения вероятностей.

Мотивация познавательной деятельности студентов.
Преподаватель сообщает, что возникновение теории вероятностей относится к середине XVII в. и связанно с исследованием Б. Паскаля, П. Ферма и Х.Гюйгенса (1629-1695) . Крупный шаг в развитии теории вероятности связан с работами Я.Бернулли (1654-1705). Ему принадлежит первое доказательство одного из важнейших положений теории вероятностей - законом больших чисел. Следующий этап в развитии теории связан с именами А.Муавра (1667-1754) , К. Гаусса, П. Лапласа (1749-1827) , С.Пуассона (1781-1840). Среди ученых Петербургской школой следует назвать имена А.М. Ляпунова (1857-1918) и А.А Маркова (1856-1922) . После работ этих математиков во всем мире теорию вероятностей стали называть “Русской наукой”. В средине 20-х годов А.Я. Хинчин (1894-1959) и А.Н. Колмогорова создали Московскую школу теории вероятностей. Вклад акад. А.Н.Колмогоров – лауреата Ленинской премии, международной премии им. Б. Больцано, члена ряда зарубежных академиков – в современную математику огромен. Заслуга А.Н.Колмогорова состоит не только в разработке новых научных теорий, но и еще в большей степени в том, что он воспитал целую плеяду талантливых ученых (акад. АН УССР Б.В. Гнеденко, акад. Ю.В. Прохоров, Б.А. Севастьянов и др.).
Теория вероятностей – математическая наука, изучающая закономерности случайных величин,- за последнее десятилетие превратилась в один из основных методов современных науки и техники. Бурное развитие теории автоматического регулирования привело к необходимости решать многочисленные вопросы, связанные с выяснением возможного хода процессов, на которые влияют случайные факторы. Теория вероятностей необходима широкому кругу специалистов – физикам, биологам, врача, экономистам, инженерам, военным, организаторам производства и т.д.

Ход занятия.

I . Организационный момент.

II . Проверка домашнего задания
Провести фронтальный опрос в виде ответов на вопросы:

Проверить решение упражнений:

  • Сколькими способами можно составить список из 10 человек?
  • Сколькими способами из 15 рабочих можно создать бригады по 5 человек в каждой?
  • 30 учащихся обменялись друг с другом фотокарточками. Сколько всего было роздано фотокарточек?

III . Изучение нового материала.
В толковом словаре С.И. Ожегова и Н.Ю. Шведовой читаем: «Вероятность – возможность исполнения, осуществимости чего-нибудь». Мы часто употребляем в повседневной жизни «вероятно», «вероятнее», «невероятно», вовсе не имея в виду конкретные количественные оценки этой возможности исполнения.
Основатель современной теории вероятностей А.Н. Колмогоров писал о вероятности так: «Вероятность математическая – это числовая характеристика степени возможности появления какого-либо определенного события в тех или иных определенных, могущих повторяться неограниченное число раз условиях».
Итак, в математике вероятность измеряется числом. Совсем скоро мы выясним, как именно это можно сделать. Но начнем мы с обсуждения того, у каких событий бывает «математическая вероятность» и что представляют собой эти «определенные, могущие повторяться неограниченное число раз условия». Именно поэтому рассмотрим случайные события и случайные эксперименты.
Нужно сказать, что теория вероятностей, как никакая другая область математики, полна противоречий и парадоксов. Объяснение этому очень простое – она слишком тесно связана с реальной, окружающей нас действительностью. Долгое время ее вместе с математической статистикой даже не хотели причислять к математическим дисциплинам, считая их сугубо прикладными науками.
Только в первой половине прошлого века, в основном благодаря трудам нашего великого соотечественника А.Н. Колмогорова, имя которого уже упоминалось выше, были построены математические основания теории вероятностей, которые позволили отделить собственно науку от ее приложений. Подход, предложенный Колмогоровым, теперь принято называть аксиоматическим, поскольку вероятность в нем (а точнее, вероятностное пространство) определяется как некая математическая структура, удовлетворяющая определенной системе аксиом.
Именно на этом подходе построен современный вузовский курс теории вероятностей, через который прошли в свое время все нынешние учителя математики. Однако в школе такой подход к изучению вероятности (да и математики в целом) вряд ли разумен. Если в вузе основной акцент делается на изучении математического аппарата для исследования вероятностных моделей, то в школе ученик должен научиться эти модели строить, анализировать, проверять их адекватность реальным ситуациям. Такую точку зрения разделяют сегодня большинство ученых, занимающихся проблемами школьного математического образования
В современных школьных учебниках можно найти следующее определение: событие называется случайным , если при одних и тех же условиях оно может как произойти, так и не произойти. Случайным будет, например, событие «При подбрасывании игрального кубика выпадет 6 очков».
В приведенном определении неявно подразумевается одно важное требование, которое необходимо подчеркнуть: мы должны иметь возможность неоднократно воспроизводить одни и те же условия, в которых наблюдается данное событие (например, подбрасывать кубик),- иначе невозможно судить о его случайности.
Стало быть, говоря о любом случайном событии, мы всегда имеем в виду наличие определенных условий, без которых об этом событии вообще не имеет смысла говорить. Этот комплекс условий называют случайным опытом или случайным экспериментом .
В дальнейшем мы будем называть случайным любое событие, связанное со случайным экспериментом . До эксперимента, как правило, невозможно точно сказать, произойдет данное событие, или не произойдет – это выясняется лишь после его завершения. Но неспроста мы сделали оговорку «как правило»: в теории вероятностей принято считать случайными все события, связанные со случайным экспериментом, в том числе:

  • невозможные , которые никогда не могут произойти;
  • достоверные, которые происходят при каждом таком эксперименте.

Например, событие «На игральном кубике выпадет 7 очков» - невозможное, а «На игральном кубике выпадет меньше семи очков» - достоверное. Разумеется, если речь идет о кубике, на гранях которого написаны числа от 1 до 6.
События называются несовместными, если каждый раз возможно появление только одного из них. События называются совместными , если в данных условиях появление одного из этих событий не исключает появление другого при том же испытании (В урне два шара – белый и черный, появление черного шара не исключает появление белого при том же испытании). События называются противоположными, если в условиях испытания они, являясь единственными его исходами, несовместны. Вероятность события рассматривается как мера объективной возможности появления случайного события.

Обозначения:
Случайные события (большими буквами латинского алфавита): A,B,C,D,.. (или ). “Случайные” опускают и говорят просто “события”.
Число исходов, благоприятствующих наступлению данного события – m;
Число всех исходов (опытов) – n.
Классическое определение вероятности.
Вероятностью события A называется отношение числа исходов m, благоприятствующих наступлению данного события к числу n всех исходов (несовместных, единственно возможных и равновозможных), т.е.
вероятность случайного события
Вероятность любого события не может быть меньше нуля и больше единицы, т.е. 0≤P(A)≤1
Невозможному событию соответствует вероятность P(A)=0, а достоверному – вероятность P(A)=1

Теоремы сложения вероятностей.
Теорема сложения вероятностей несовместных событий.
Вероятность появления одного из нескольких попарно несовместных событий, безразлично какого, равна сумме вероятностей этих событий:

P(A+B)=P(A)+P(B);
P(+ +…+=P(+P+…+P().

Теорема сложения вероятностей совместных событий.
Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления:

P(A+B)=P(A)+P(B)-P(AB)

Для трех совместных событий имеет место формула:
P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)

Событие, противоположное событию A (т.е. ненаступление события A), обозначают . Сумма вероятностей двух противоположных событий равна единице: P(A)+P()=1

Вероятность наступления события A, вычисленная в предположении, что событие B уже произошло, называется условной вероятностью события A при условии B и обозначается (A) или P(A/B).
Если A и B – независимые события, то
P(B)-(B)=(B).

События A,B,C,… называются независимыми в совокупности, если вероятность каждого из них не меняется в связи с наступлением или ненаступлением других событий по отдельности или в любой их комбинации.

Теоремы умножения вероятностей.
Теорема умножения вероятностей независимых событий.
Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий:
P(AB)=P(A) P(B)

Вероятность появления нескольких событий, независимых в совокупности, вычисляется по формуле:
P()=P() P()… P().

Теорема умножения вероятностей зависимых событий.
Вероятность совместного появления двух зависимых событий равна произведению одного из них на условную вероятность второго:
P(AB)=P(A) (B)=P(B) (A)

IV . Применение знаний при решении типовых задач
Задача 1.
В лотерее из 1000 билетов имеются 200 выигрышных. Вынимают наугад один билет. Чему равна вероятность того, что этот билет выигрышный?
Решение: Событие A-билет выигрышный. Общее число различных исходов есть n=1000
Число исходов, благоприятствующих получению выигрыша, составляет m=200. Согласно формуле P(A)=, получим P(A)== = 0,2 = 0,147

Задача 4 .
В ящике в случайном порядке разложены 20 деталей, причем 5 из них стандартные. Рабочий берет наудачу 3 детали. Найти вероятность того, что по крайней мере одна из взятых деталей окажется стандартной.

Задача 5.
Найти вероятность того, что наудачу взятое двухзначное число окажется кратным либо 3, либо 5, либо тому и другому одновременно

Задача 6.
В одной урне находятся 4 белых и 8 черных шаров, в другой – 3 белых и 9 черных. Из каждой урны вынули по шару. Найти вероятность того, что оба шара окажутся белыми.
Решение: Пусть A - появление белого шара из первой урны, а B – появление белого шара из второй урны. Очевидно, что события A и B независимы. Найдем P(A)=4/12=1/3, P(B)=3/12=1/4, получим
P(AB)=P(A) P(B)=(1/3) (1/4)=1/12=0,083

Задача 7.
В ящике находится 12 деталей, из которых 8 стандартных. Рабочий берет наудачу одну за другой две детали. Найти вероятность того, что обе детали окажутся стандартными.
Решение: Введем следующие обозначения: A – первая взятая деталь стандартная; B – вторая взятая деталь стандартная. Вероятность того, что первая деталь стандартная, составляет P(A)=8/12=2/3. Вероятность того, что вторая взятая деталь окажется стандартной при условии, что была стандартной первая деталь, т.е. условная вероятность события B, равна (B)=7/11.
Вероятность того, что обе детали окажутся стандартными, находим по теореме умножения вероятностей зависимых событий:
P(AB)=P(A) (B)=(2/3) (7/11)=14/33=0,424

Самостоятельное применение знаний, умений и навыков.
Вариант 1.

  1. Какова вероятность того, что наудачу выбранное целое число от 40 до 70 является кратным 6?
  2. Какова вероятность того, что при пяти бросаниях монеты она три раза упадет гербом к верху?

Вариант 2.

  1. Какова вероятность того, что наудачу выбранное целое число от 1 до 30 (включительно) является делителем числа 30?
  2. В НИИ работает 120 человек, из них 70 знают английский язык, 60 – немецкий, а 50 – знают оба. Какова вероятность того, что выбранный наудачу сотрудник не знает ни одного иностранного языка?

VI . Подведение итогов занятия.

VII . Домашнее задание:
Г.Н. Яковлев, математика, книга 2, § 24.1, 24.2, стр. 365-386. Упражнения 24.11, 24.12, 24.17

Теоремы сложения и умножения вероятностей

Теорема сложения

Вероятность наступления одного из нескольких несовместных событий равна сумме вероятностей этих событий.

В случае двух несовместных событий А и В имеем:

Р(А+В) = Р(А) + Р(В) (7)

Событие, противоположное событию А обозначают . Объединение событий А и даёт событие достоверное, а поскольку события А и несовместны, то

Р(А) +Р() = 1 (8)

Вероятность события А, вычисленная в предположении, что событие В наступило, называется условной вероятностью события А и обозначается символом Р В (А).

Если события А и В независимые, то Р(В) = Р А (В).

События А, В, С, … называются независимыми в совокупности , если вероятность каждого из них не меняется в связи с наступлением или ненаступлением других событий по отдельности или в любой комбинации их и в любом числе.

Теорема умножения

Вероятность того, что произойдут события и А, и В, и С, … равна произведению их вероятностей, вычисленных в предположении, что все предшествующие каждому из них события имели место, т. е.

Р(АВ) = Р(А)Р А (В) (9)

Запись Р А (В) обозначает вероятность события В в предположении, что событие А уже имело место.

Если события А, В, С, … независимы в совокупности, то вероятность того, что произойдут все они, равна произведению их вероятностей:

Р(АВС) = Р(А)Р(В)Р(С) (10)

Пример 3.1. В мешке лежат шары: 10 белых, 15 чёрных, 20 голубых и 25 красных. Вынули один шар. Найти вероятность того, что вынутый шар окажется белым? чёрным? И ещё: белый или чёрный?

Решение.

Число всех возможных испытаний n = 10 + 15 + 20 + 25 = 70;

Вероятность Р(б) = 10/70 = 1/7, Р(ч) = 15/70 = 3/14.

Применяем теорему сложения вероятностей:

Р(б + ч) = Р(б) + Р(ч) = 1/7 + 3/14 = 5/14.

Примечание: заглавные буквы в скобках соответственно обозначают цвет каждого шара согласно условию задачи.

Пример 3.2 В первом ящике два белых и десять чёрных шаров. Во втором ящике восемь белых и четыре чёрных шара. Из каждого ящика вынули по шару. Определить вероятность того, что оба шара окажутся белыми.

Решение.

Событие А – появление белого шара из первого ящика. Событие В – появление белого шара из второго ящика. События А и В – независимые.

Вероятности Р(А) = 2/12 = 1/6, Р(В) = 8/12 = 2/3.

Применяем теорему умножения вероятностей:

Р(АВ) = Р(А)Р(В) = 2/18 = 1/9.

Вопросы для повторения

1 Что называется факториалом?

2 Перечислите основные задачи комбинаторики.

3 Что называется перестановками?

4 Что называется перемещениями?

5 Что называется сочетаниями?

6 Какие события называются достоверными?

7 Какие события называются несовместными?

8 Что называется вероятностью события?

9 Что называется условной вероятностью?

10 Сформулируйте теоремы сложения и умножения вероятностей.

11 пр .Размещением из п элементов по к (к ≤ п ) называется любое множество, состоящее из к элементов, взятых в определенном порядке из данных п элементов.

Таким образом, два размещения из п элементов по к считаются различными, если они различаются самими элементами или порядком их расположения Число размещений из п элементов по к обозначают А п к и вычисляют по формуле

А п к =

Если размещения из п элементов по п отличаются друг от друга только порядком элементов, то они представляют собой перестановки из п элементов

Пример1 . Учащиеся второго класса изучают 9 предметов. Сколькими способами можно составить расписание на один день, чтобы в нем было 4 различных предмета

Решение: Любое расписание на один день, составленное из 4 различных предметов, отличается от другого либо набором предметов, либо порядком их следования. Значит, в этом примере речь идет о размещениях из 9 элементов по 4. Имеем

А 9 4 = = 6 ∙ 7 ∙ 8 ∙ 9 = 3024

Расписание можно составить 3024 способами

Пример2. Сколько трехзначных чисел (без повторения цифр в записи числа) можно составить из цифр 0,1,2,3,4,5,6 ?

Решение Если среди семи цифр нет нуля, то число трехзначных чисел (без повторения цифр), которые можно составить из этих цифр, равно числу размещений

22

из 7 элементов по 3. Однако среди данных цифр есть цифра 0, с которой не может начинаться трехзначное число. Поэтом из размещений из 7 элементов по3 надо исключить те, у которых первым элементом является 0. Их число равно числу размещений их 6 элементов по 2. =

Значит искомое число трехзначных чисел равно

А 7 3 - А 6 2 = - = 5 ∙ 6 ∙ 7 - 5 ∙ 6 = 180.

3. Закрепление полученных знаний в процессе решения задач

754 . Сколькими способами может разместиться семья из трех человек в четырехместном купе, если других пассажиров в купе нет?

Решение. Число способов равно А 4 3 = = 1∙ 2 ∙ 3 ∙ 4 = 24

755. Из 30 участников собрания надо выбрать председателя и секретаря. Сколькими способами это можно сделать?

Решение. Т.к.любой из участников может быть как секретарем, так и председателем, то число способов их избрания равно

А 30 2 = = = 29 ∙ 30 = 870

762 Сколько четырехзначных чисел, в которых нет одинаковых цифр, можно составить из цифр: а) 1,3,5,7,9. б) 0,2,4,6,8?

Решение а) А 5 4 = = 1∙ 2 ∙ 3 ∙ 4 ∙ 5 = 120

б)) А 5 4 - А 4 3 = 5! – 4! = 120 – 24= 96

Домашнее задание № 756, №757, № 758, №759.

6урок Тема: « Сочетания»

Цель: Дать понятие о сочетаниях, познакомить с формулой для вычисления сочетаний, научить применять эту формулу для подсчета числа сочетаний.

1 Проверка домашнего задания.

756 . На станции 7 запасных путей. Сколькими способами можно расставить на них 4 поезда?

23

Решение: А 7 4 = = 4 ∙ 5 ∙ 6 ∙ 7 = 20 ∙ 42 = 840 способов

757 Сколькими способами тренер может определить, кто из 12 спортсменок, готовых к участию в эстафете 4х100м, побежит на первом, втором, третьем и четвертом этапах?

Решение: А 12 4 = = 9 ∙ 10 ∙ 11 ∙12 = 90 ∙132 = 11 880

758. В круговой диаграмме круг разбит на 5 секторов. Секторы решили закрасить разными красками, взятыми из набора, содержащего 10 красок. Сколькими способами это можно сделать?

Решение: А 10 5 = = 6 ∙ 7 ∙ 8 ∙ 9∙ 10 = 30 240

759. Сколькими способами 6 студентов, сдающих экзамен, могут занять места в аудитории, в которой 20 одноместных столов?

Решение: А 20 6 = = 15∙ 16 ∙17∙ 18∙19 ∙20 = 27 907 200

Организовать проверку домашнего задания можно разными способами: устно проверить решение домашних упражнений, решения некоторых из них записать на доске, а пока идет запись решений провести опрос уч-ся по вопросам:



1. Что означает запись п!

2.Что называется перестановкой из п элементов?

3.По какой формуле считают число перестановок?

4. Что называют размещением из п элементов по к?

5. п элементов по к?

2 Объяснение нового материала

Пусть имеются 5 гвоздик разного цвета. Обозначим их буквами а, в, с, д, е. Требуется составить букет из трех гвоздик. Выясним, какие букеты могут быть составлены.

Если в букет входит гвоздика а , то можно составить такие букеты:

авс, авд, аве, асд, асе, аде.

Если в букет не входит гвоздика а, но входит гвоздика в , то можно получить такие букеты:

всд, все, вде.

Наконец, если в букет не входит ни гвоздика а, ни гвоздика в, то возможен только один вариант составления букета:

сде.

24

Мы указали все возможные способы составления букетов, в которых по – разному сочетаются три гвоздики из 5. Говорят, что мы составили все возможные сочетания из 5 элементов по 3, мы нашли, что С 5 3 = 10.

Выведем формулу числа сочетаний из п элементов по к, где к ≤ п.

Выясним сначала, как С 5 3 выражается через А 5 3 и Р 3 . Мы нашли, что их 5 элементов можно составить следующие сочетания по 3 элемента:

авс, авд, аве, асд, асе, аде, всд, все, вде, сде.

В каждом сочетании выполним все перестановки. Число перестановок из 3 элементов равно Р 3 . В результате получим все возможные комбинации из 5 элементов по 3, которые различаится либо самими элементами, либо порядком элементов, т.е. все размещения из 5 элементов по 3. Всего мы получим А 5 3 размещений.

Значит , С 5 3 ∙ Р 3 = А 5 3 , отсюда С 5 3 = А 5 3: Р 3

Рассуждая в общем случае получим С п к = А п к: Р к,

Пользуясь тем, что А п к = , где к ≤ п., получим С п к = .

Это формула для вычисления числа сочетаний из п элементов по к при любом

к ≤ п.

Пример1 . Из набора, состоящего из 15 красок, надо выбрать3 краски для окрашивания шкатулки. Сколькими способами можно сделать этот выбор?

Решение: Каждый выбор трех красок отличается от другого хотя бы одной краской. Значит, здесь речь идет о сочетаниях из 15 элементов по 3

С 15 3 = = (13∙ 14∙15) : ( 1∙ 2 ∙ 3) = 455

Приме2 В классе учатся 12 мальчиков и 10 девочек. Для уборки территории около школы требуется выделить трех мальчиков и двух девочек. Сколькими способами можно сделать этот выбор?

Решение: Выбрать 3 мальчиков из 12 можно С 12 3 , а двух девочек из 10 можно выбрать С 10 2 . Т. к. при каждом выборе мальчиков можно С 10 2 способами выбрать девочек, то сделать выбор учащихся, о котором говориться в задаче можно

С 12 3 ∙ С 10 2 = ∙ = 220 ∙ 45 = 9900

3) Закрепление нового материала, в процессе решения задач

25

Задача

У Саши в домашней библиотеке есть 8 исторических романов. Петя хочет взять у него 2 любых романа. Сколькими способами можно сделать этот выбор?

Решение: С 8 2 = = (7 ∙ 8) : ( 1∙ 2) = 56: 2 = 28

779 а

В шахматном кружке занимаются 16 человек. Сколькими способами тренер может выбрать из них для предстоящего турнира команду из 4 человек?

Решение: С 16 4 = = (13∙ 14∙15 ∙16) : ( 1∙ 2 ∙ 3 ∙ 4) = 13 ∙ 7 ∙5∙ 4 = 91 ∙20 = 1820

774 Бригада, занимающаяся ремонтом школы, состоит из 12 маляров и 5 плотников. Из них для ремонта спротзала надо выделить 4 маляров и 2 плотников. Сколькими способами можно это сделать?

С 12 4 ∙ С 5 2 = ∙ = 495 ∙ 10 = 4950

Домашняя работа №768, №769, № 770, № 775

7урок Тема: « Решение задач на применение формул для подсчета числа перемещений, размещений, сочетаний»

Цель: Закрепление знаний учащихся. Формирование навыков решения простейших комбинаторных задач

1 Проверка домашнего задания

768 В классе 7 человек успешно занимаются математикой. Сколькими способами можно выбрать из них двоих для участия в математической олимпиаде?

Решение: С 7 2 = = (6∙ 7) : 2 = 21

769 В магазине « Филателия» продается 8 различных наборов марок, посвященных спортивной тематике. Сколькими способами можно выбрать из них 3 набора?

Решение: С 8 3 = = (6 ∙ 7 ∙ 8) : ( 1∙ 2 ∙ 3) = 56

26

770 Учащимся дали список из 10 книг, которые рекомендуется прочитать во время каникул. Сколькими способами ученик может выбрать из них 6 книг?

Решение: С 10 6 = = (7 ∙ 8 ∙ 9∙ 10) : ( 1∙ 2 ∙ 3 ∙ 4) = 210

775 В библиотеке читателю предложили на выбор из новых поступлений 10 книг и 4 журнала. Сколькими способами он может выбрать из них 3 книги и 2 журнала?

Решение: С 10 3 ∙ С 4 2 = ∙ = 120 ∙ 6 = 720

Вопросы классу

1.Что называется перестановкой из п элементов?

2.По какой формуле считают число перестановок?

3. Что называют размещением из п элементов по к?

4. По какой формуле считают число размещений из п элементов по к?

5. Что называют сочетанием из п элементов по к?

6. По какой формуле считают число сочетаний из п элементов по к?

Задачи для совместного решения

При решении каждой задачи вначале идет обсуждение: какая из трех изученных формул поможет получить ответ и почему

1. Сколько четырехзначных чисел можно составить из цифр 4,6,8,9, при условии, что все цифры разные?

2. Из 15 человек в группе студентов надо выбрать старосту и его заместителя. Сколькими способами это можно сделать?

3. Из 10 лучших учащихся школы два человека надо послать на слет лидеров.

Сколькими способами это можно сделать?

Замечание: В задаче №3 не имеет значения кого выбрать: любых 2 человек из 10, поэтому здесь работает формула для подсчета числа сочетаний.

В задаче №2 выбирают упорядоченную пару,т.к. в выбранной паре,если фамилии поменять местами это будет уже другой выбор, поэтому здесь работает формула для подсчета числа размещений

Ответы к задачам для совместного решения:

№1 24 числа. №2 210 способов. №3 45 способов

Задачи для совместного обсуждения и самостоятельных вычислений

№1Встретились 6 друзей и каждый пожал руку каждому своему другу. Сколько было рукопожатий?

27

№2 Сколькими способами можно составить расписание для учащихся 1класса на один день, если у них 7 предметов, и в этот день должно быть 4 урока?

(Число размещений из 7 по 4)

№3 В семье 6 человек, а за столом в кухне 6 стульев. Было решено каждый вечер перед ужином рассаживаться на эти 6 стульев по- новому. Сколько дней члены семьи смогут делать это без повторений.

№4 К хозяину дома пришли гости А,В,С,Д. За круглым столом – пять разных стульев. Сколько существует способов рассаживания?

(В гости пришли 4 человека + хозяин = 5 человек рассаживаются на 5 стульях, надо посчитать число перестановок)

5. В книжке раскраске нарисованы непересекающиеся треугольник, квадрат и круг. Каждую фигуру надо раскрасить в один из цветов радуги, разные фигуры в разные цвета. Сколько существует способов раскрашивания?

(Посчитайте число размещений из 7 по 3)

№6 В классе 10 мальчиков и 4 девочки. Надо выбрать 3 человека дежурными так, чтобы среди них было 2 мальчика и 1 девочка. Сколькими способами это можно сделать?

(Число сочетаний из 10 по 2 умножить на число сочетаний из 4 по 1)

Ответы для задач с самостоятельным вычислением

1 15 рукопожатий

2 840 способов

3 720дней

5 120 способов

6 180 способов

Домашнее задание №835, №841

8 урок Тема: « Самостоятельная работа»

Цель: Проверка знаний учащихся

1.Проверка домашнего задании

^ 835 Сколько четных четырехзначных чисел, в которых цифры не повторяются, можно записать с помощью цифр а) 1,2,3,7 . б) 1,2,3,4.

28

а) Наши числа должны оканчиваться четной цифрой, такая цйфра в условии одна это цифра 2 , поставим ее на последнее место, а оставшиеся 3 цифры будем переставлять, число таких перестановок равно 3! = 6 .Значит можно составить 6 четных чисел

б) рассуждаем как в примере а) поставив на последнее место цифру 2 получим 6 четных чисел, поставив на последнее место цифру 4 получим еще 6 четных чисел,

значит всего 12 четных чисел

841 Сколькими способами из класса, где учатся 24 учащихся можно выбрать: а) двух дежурных; б) старосту и его помощника?

а) т.к. дежурными могут быть любые 2 человека из 24 , то количество пар равно

С 24 2 = = 23 ∙ 24:2 = 276

б) здесь выдирают упорядоченную пару элементов из 24 элементов, количество таких пар равно А 24 2 = = 23 ∙ 24 = 552

1 вариант решает задания № 1,2,3,4,5.

2 вариант решает задания №6,7,8,9,10.

Решение простейших комбинаторных задач

(по материалам к.р. в апреле 2010 года)

1 . Сколькими способами можно расставить на полке пять книг разных авторов?

2. Сколькими способами можно составить полдник из напитка и пирожка, если в меню указаны: чай, кофе, какао и пирожки с яблоком или с вишней?

3. В среду по расписанию в 9 «А» классе должно быть 5 уроков: химия, физика, алгебра, биология и ОБЖ. Сколькими способами можно составить расписание на этот день?

4. Имеются 2 белых лошади и 4 гнедых. Сколькими способами можно

составить пару из лошадей разной масти?

5. Каким числом способов можно разложить 5 различных монет в 5 разных карманов?

29

6. В шкафу на полке лежат 3 шапки различных фасонов и 4 шарфа разных цветов. Сколькими способами можно составить набор из одной шапки и одного шарфа?

7. В финал конкурса красоты вышли 4 участницы. Сколькими способами

можно установить очередность выступления участниц финала красоты?

^ 8 .Имеются 4 утки и 3 гуся. Сколькими способами можно из них выбрать две разных птицы?

9. Сколькими способами можно разложить 5 разных писем по 5 разным

конвертам, если в каждый конверт кладется только одно письмо?

10. В коробке хранятся 5 красных и 4 зелёных шара. Сколькими способами можно составить пару из шаров разного цвета?

Ответы для заданий самостоятельной работы

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

СЛОЖЕНИЕ И УМНОЖЕНИЕ ВЕРОЯТНОСТЕЙ. ПОВТОРНЫЕ НЕЗАВИСИМЫЕ ИСПЫТАНИЯ

Лекция для студентов землеустроительного факультета

заочной формы обучения

Горки, 2012

Сложение и умножение вероятностей. Повторные

независимые испытания

    Сложение вероятностей

Суммой двух совместных событий А и В называется событие С , состоящее в наступлении хотя бы одного из событий А или В . Аналогично суммой нескольких совместных событий называется событие, состоящее в наступлении хотя бы одного из этих событий.

Суммой двух несовместных событий А и В называется событие С , состоящее в наступлении или события А , или события В . Аналогично суммой нескольких несовместных событий называется событие, состоящее в наступлении какого-либо одного из этих событий.

Справедлива теорема сложения вероятностей несовместных событий: вероятность суммы двух несовместных событий равна сумме вероятностей этих событий , т.е. . Эту теорему можно распространить на любое конечное число несовместных событий.

Из данной теоремы следует:

сумма вероятностей событий, образующих полную группу, равна единице;

сумма вероятностей противоположных событий равна единице, т.е.
.

Пример 1 . В ящике находятся 2 белых, 3 красных и 5 синих шара. Шары перемешивают и наугад извлекают один. Какова вероятность того, что шар окажется цветным?

Решение . Обозначим события:

A ={извлечён цветной шар};

B ={извлечён белый шар};

C ={извлечён красный шар};

D ={извлечён синий шар}.

Тогда A = C + D . Так как события C , D несовместны, то воспользуемся теоремой сложения вероятностей несовместных событий: .

Пример 2 . В урне находятся 4 белых шара и 6 – чёрных. Из урны наугад вынимают 3 шара. Какова вероятность того, что все они одного цвета?

Решение . Обозначим события:

A ={вынуты шары одного цвета};

B ={вынуты шары белого цвета};

C ={вынуты шары чёрного цвета}.

Так как A = B + C и события В и С несовместны, то по теореме сложения вероятностей несовместных событий
. Вероятность событияВ равна
, где
4,

. Подставим k и n в формулу и получим
Аналогично найдём вероятность событияС :
, где
,
, т.е.
. Тогда
.

Пример 3 . Из колоды в 36 карт наугад вынимают 4 карты. Найти вероятность того, что среди них окажется не менее трёх тузов.

Решение . Обозначим события:

A ={среди вынутых карт не менее трёх тузов};

B ={среди вынутых карт три туза};

C ={среди вынутых карт четыре туза}.

Так как A = B + C , а события В и С несовместны, то
. Найдём вероятности событийВ и С :


,
. Следовательно, вероятность того, что среди вынутых карт не менее трёх тузов, равна

0.0022.

    Умножение вероятностей

Произведением двух событий А и В называется событие С , состоящее в совместном наступлении этих событий:
. Это определение распространяется на любое конечное число событий.

Два события называются независимыми , если вероятность наступления одного из них не зависит от того, произошло другое событие или нет. События ,, … ,называютсянезависимыми в совокупности , если вероятность наступления каждого из них не зависит от того, произошли или не произошли другие события.

Пример 4 . Два стрелка стреляют по цели. Обозначим события:

A ={первый стрелок попал в цель};

B ={второй стрелок попал в цель}.

Очевидно, что вероятность попадания в цель первым стрелком не зависит от того, попал или не попал второй стрелок, и наоборот. Следовательно, события А и В независимы.

Справедлива теорема умножения вероятностей независимых событий: вероятность произведения двух независимых событий равна произведению вероятностей этих событий : .

Эта теорема справедлива и для n независимых в совокупности событий: .

Пример 5 . Два стрелка стреляют по одной цели. Вероятность попадания первого стрелка равна 0.9, а второго – 0.7. Оба стрелка одновременно делают по одному выстрелу. Определить вероятность того, что будут иметь место два попадания в цель.

Решение . Обозначим события:

A

B

C ={оба стрелка попадут в цель}.

Так как
, а событияА и В независимы, то
, т.е..

События А и В называются зависимыми , если вероятность наступления одного из них зависит от того, произошло другое событие или нет. Вероятность наступления события А при условии, что событие В уже наступило, называется условной вероятностью и обозначается
или
.

Пример 6 . В урне находятся 4 белых и 7 чёрных шаров. Из урны извлекаются шары. Обозначим события:

A ={извлечён белый шар} ;

B ={извлечён чёрный шар}.

Перед началом извлечения шаров из урны
. Из урны извлекли один шар и он оказался чёрным. Тогда вероятность событияА после наступления события В будет уже другой, равной . Это означает, что вероятность событияА зависит от события В , т.е. эти события будут зависимыми.

Справедлива теорема умножения вероятностей зависимых событий: вероятность произведения двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило , т.е. или.

Пример 7 . В урне находятся 4 белых шара и 8 красных. Из неё наугад последовательно извлекают два шара. Найти вероятность того, что оба шара будут чёрными.

Решение . Обозначим события:

A ={первым извлечён чёрный шар};

B ={вторым извлечён чёрный шар}.

События А и В зависимы, так как
, а
. Тогда
.

Пример 8 . Три стрелка стреляют по цели независимо друг от друга. Вероятность попадания в цель для первого стрелка равна 0.5, для второго – 0.6 и для третьего – 0.8. Найти вероятность того, что произойдут два попадания в цель, если каждый стрелок сделает по одному выстрелу.

Решение . Обозначим события:

A ={произойдут два попадания в цель};

B ={первый стрелок попадёт в цель};

C ={второй стрелок попадёт в цель};

D ={третий стрелок попадёт в цель};

={первый стрелок не попадёт в цель};

={второй стрелок не попадёт в цель};

={третий стрелок не попадёт в цель}.

По условию примера
,
,
,

,
,
. Так как, то используя теорему сложения вероятностей несовместных событий и теорему умножения вероятностей независимых событий, получим:

Пусть события
образуют полную группу событий некоторого испытания, а событииА может наступить только с одним из этих событий. Если известны вероятности и условные вероятностисобытияА , то вероятность события А вычисляется по формуле:

или
. Эта формула называетсяформулой полной вероятности , а события
гипотезами .

Пример 9 . На сборочный конвейер поступает 700 деталей с первого станка и 300 деталей со второго. Первый станок даёт 0.5% брака, а второй – 0.7%. Найти вероятность того, что взятая деталь будет бракованной.

Решение . Обозначим события:

A ={взятая деталь будет бракованной};

={деталь изготовлена на первом станке};

={деталь изготовлена на втором станке}.

Вероятность того, что деталь изготовлена на первом станке, равна
. Для второго станка
. По условию вероятность получения бракованной детали, изготовленной на первом станке, равна
. Для второго станка эта вероятность равна
. Тогда вероятность того, что взятая деталь будет бракованной, вычисляется по формуле полной вероятности

Если известно, что в результате испытания наступило некоторое событие А , то вероятность того, что это событие наступило с гипотезой
, равна
, где
- полная вероятность событияА . Эта формула называется формулой Байеса и позволяет вычислять вероятности событий
после того, как стало известно, что событиеА уже наступило.

Пример 10 . Однотипные детали к автомобилям производятся на двух заводах и поступают в магазин. Первый завод производит 80% общего количества деталей, а второй – 20%. Продукция первого завода содержит 90% стандартных деталей, а второго – 95%. Покупатель купил одну деталь и она оказалась стандартной. Найти вероятность того, что эта деталь изготовлена на втором заводе.

Решение . Обозначим события:

A ={куплена стандартная деталь};

={деталь изготовлена на первом заводе};

={деталь изготовлена на втором заводе}.

По условию примера
,
,
и
. Вычислим полную вероятность событияА : 0.91. Вероятность того, что деталь изготовлена на втором заводе, вычислим по формуле Байеса:

.

Задания для самостоятельной работы

    Вероятность попадания в цель для первого стрелка равна 0.8, для второго – 0.7 и для третьего – 0.9. Стрелки произвели по одному выстрелу. Найти вероятность того, что имеет место не менее двух попаданий в цель.

    В ремонтную мастерскую поступило 15 тракторов. Известно, что 6 из них нуждаются в замене двигателя, а остальные – в замене отдельных узлов. Случайным образом отбираются три трактора. Найти вероятность того, что замена двигателя необходима не более, чем двум отобранным тракторам.

    На железобетонном заводе изготавливают панели, 80% из которых – высшего качества. Найти вероятность того, что из трёх наугад выбранных панелей не менее двух будут высшего сорта.

    Три рабочих собирают подшипники. Вероятность того, что подшипник, собранный первым рабочим, высшего качества, равна 0.7, вторым – 0.8 и третьим – 0.6. Для контроля наугад взято по одному подшипнику из собранных каждым рабочим. Найти вероятность того, что не менее двух из них будут высшего качества.

    Вероятность выигрыша по лотерейному билету первого выпуска равна 0.2, второго – 0.3 и третьего – 0.25. Имеются по одному билету каждого выпуска. Найти вероятность того, что выиграет не менее двух билетов.

    Бухгалтер выполняет расчёты, пользуясь тремя справочниками. Вероятность того, что интересующие его данные находятся в первом справочнике, равна 0.6, во втором – 0.7 ив третьем – 0.8. Найти вероятность того, что интересующие бухгалтера данные содержатся не более, чем в двух справочниках.

    Три автомата изготавливают детали. Первый автомат изготавливает деталь высшего качества с вероятностью 0.9, второй – с вероятностью 0.7 и третий – с вероятностью 0.6. Наугад берут по одной детали с каждого автомата. Найти вероятность того, что среди них не менее двух высшего качества.

    На двух станках обрабатываются однотипные детали. Вероятность изготовления нестандартной детали для первого станка равна 0.03, в для второго – 0.02. Обработанные детали складываются в одном месте. Среди них 67% с первого станка, а остальные – со второго. Наугад взятая деталь оказалась стандартной. Найти вероятность того, что она изготовлена на первом станке.

    В мастерскую поступили две коробки однотипных конденсаторов. В первой коробке было 20 конденсаторов, из которых 2 неисправных. Во второй коробки 10 конденсаторов, из которых 3 неисправных. Конденсаторы были переложены в один ящик. Найти вероятность того, что наугад взятый из ящика конденсатор окажется исправным.

    На трёх станках изготавливают однотипные детали, которые поступают на общий конвейер. Среди всех деталей 20% с первого автомата, 30% - со второго и 505 – с третьего. Вероятность изготовления стандартной детали на первом станке равна 0.8, на втором – 0.6 и на третьем – 0.7. Взятая деталь оказалась стандартной. Найти вероятность того, эта деталь изготовлена на третьем станке.

    Комплектовщик получает для сборки 40% деталей с завода А , а остальные – с завода В . Вероятность того, что деталь с завода А – высшего качества, равна 0.8, а с завода В – 0.9. Комплектовщик наугад взял одну деталь и она оказалась не высшего качества. Найти вероятность того, что эта деталь с завода В .

    Для участия в студенческих спортивных соревнованиях выделено 10 студентов из первой группы и 8 – из второй. Вероятность того, что студент из первой группы попадёт в сборную академии, равна 0.8, а со второй – 0.7. Наугад выбранный студент попал в сборную. Найти вероятность того, что он из первой группы.

    Формула Бернулли

Испытания называются независимыми , если при каждом из них событие А наступает с одной и той же вероятностью
, не зависящей от того, появилось или не появилось это событие в других испытаниях. Вероятность противоположного событияв этом случае равна
.

Пример 11 . Бросается игральный кубик n раз. Обозначим событие A ={выпадение трёх очков}. Вероятность наступления события А в каждом испытании равна и не зависит от того, произошло или не произошло это событие в других испытаниях. Поэтому эти испытания являются независимыми. Вероятность противоположного события
{не выпадение трёх очков} равна
.

Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность наступления события А равна p , событие наступит ровно k раз (безразлично в какой последовательности), вычисляется по формуле
, где
. Эта формула называетсяформулой Бернулли и удобна она в том случае, если число испытаний n не слишком велико.

Пример 12 . Доля плодов, заражённых болезнью в скрытой форме, составляет 25%. Случайным образом отбирается 6 плодов. Найти вероятность того, что среди выбранных окажется: а) ровно 3 заражённых плода; б) не более двух заражённых плодов.

Решение . По условию примера .

а) По формуле Бернулли вероятность того, что среди шести отобранных плодов заражёнными окажутся ровно три, равна




0.132.

б) Обозначим событие A ={заражённых будет не более двух плодов}. Тогда . По формуле Бернулли:

0.297.

Следовательно,
0.178+0.356+0.297=0.831.

    Теоремы Лапласа и Пуассона

По формуле Бернулли находится вероятность того, что событие А наступит k раз в n независимых испытаниях и в каждом испытании вероятность события А постоянна. При больших значениях n вычисления по формуле Бернулли становятся трудоёмкими. В этом случае для вычисления вероятности события А целесообразнее использовать другую формулу.

Локальная теорема Лапласа . Пусть вероятность p наступления события А в каждом испытании постоянна и отлична от нуля и единицы. Тогда вероятность того, что событие А наступит ровно k раз при достаточно большом числе n испытаний, вычисляется по формуле

, где
, а значения функции
приведены в таблице.

Основными свойствами функции
являются:

Функция
определена и непрерывна в интервале
.

Функция
положительна, т.е.
>0.

Функция
чётная, т.е.
.

Так как функция
чётная, то в таблице приведены её значения только для положительных значенийх .

Пример 13 . Всхожесть семян пшеницы составляет 80%. Для опыта отбирается 100 семян. Найти вероятность того, что из отобранных семян взойдут ровно 90.

Решение . По условию примера n =100, k =90, p =0.8, q =1-0.8=0.2. Тогда
. По таблице найдём значение функции
:
. Вероятность того, что из отобранных семян взойдут ровно 90, равна
0.0044.

При решении практических задач возникает необходимость найти вероятность наступления события А при n независимых испытаниях не менее раз и не болеераз. Такая задача решается с помощьюинтегральной теоремы Лапласа : Пусть вероятность p наступления события А в каждом из n независимых испытаний постоянна и отлична от нуля и единицы. Тогда вероятность того, что событие наступит не менее раз и не болеераз при достаточно большом числе испытаний, вычисляется по формуле

Где
,
.

Функция
называетсяфункцией Лапласа и не выражается через элементарные функции. Значения этой функции приведены в специальных таблицах.

Основными свойствами функции
являются:


.

Функция
возрастает в интервале
.


при
.

Функция
нечётная, т.е.
.

Пример 14 . Предприятие выпускает продукцию, из которой 13% не высшего качества. Определить вероятность того, что в непроверенной партии из 150 единиц продукции высшего качества будет не менее 125 и не более 135.

Решение . Обозначим . Вычислим
,

При оценки вероятности наступления какого-либо случайного события очень важно предварительно хорошо представлять, зависит ли вероятность () наступления интересующего нас события от того, как развиваются остальные события.

В случае классической схемы, когда все исходы равновероятны, мы уже можем оценить значения вероятности интересующего нас отдельного события самостоятельно. Мы можем сделать это даже в том случае, если событие является сложной совокупностью нескольких элементарных исходов. А если несколько случайных событий происходит одновременно или последовательно? Как это влияет на вероятность реализации интересующего нас события?

Если я несколько раз кидаю игральную кость, и хочу, чтобы выпала "шестерка", а мне все время не везет, значит ли это, что надо увеличивать ставку, потому что, согласно теории вероятностей, мне вот-вот должно повезти? Увы, теория вероятности не утверждает ничего подобного. Ни кости, ни карты, ни монетки не умеют запоминать, что они продемонстрировали нам в прошлый раз. Им совершенно не важно, в первый раз или в десятый раз сегодня я испытываю свою судьбу. Каждый раз, когда я повторяю бросок, я знаю только одно: и на этот раз вероятность выпадения "шестерки" снова равна одной шестой. Конечно, это не значит, что нужная мне цифра не выпадет никогда. Это означает лишь то, что мой проигрыш после первого броска и после любого другого броска - независимые события.

События А и В называются независимыми , если реализация одного из них никак не влияет на вероятность другого события. Например, вероятности поражения цели первым из двух орудий не зависят от того, поразило ли цель другое орудие, поэтому события "первое орудие поразило цель" и "второе орудие поразило цель" независимы.

Если два события А и В независимы, и вероятность каждого из них известна, то вероятность одновременного наступления и события А, и события В (обозначается АВ) можно посчитать, воспользовавшись следующей теоремой.

Теорема умножения вероятностей для независимых событий

P(AB) = P(A)*P(B) - вероятность одновременного наступления двух независимых событий равна произведению вероятностей этих событий.

Пример. Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: р 1 =0,7; р 2 =0,8. Найти вероятность попадания при одном залпе обоими орудиями одновременно.

Решение: как мы уже видели события А (попадание первого орудия) и В (попадание второго орудия) независимы, т.е. Р(АВ)=Р(А)*Р(В)=р 1 *р 2 =0,56.


Что произойдет, с нашими оценками, если исходные события не являются независимыми? Давайте немного изменим предыдущий пример.

Пример. Два стрелка на соревнованиях стреляют по мишеням, причем, если один из них стреляет метко, то соперник начинает нервничать, и его результаты ухудшаются. Как превратить эту житейскую ситуацию в математическую задачу и наметить пути ее решения? Интуитивно понятно, что надо каким-то образом разделить два варианта развития событий, составить по сути дела два сценария, две разные задачи. В первом случае, если соперник промахнулся, сценарий будет благоприятный для нервного спортсмена и его меткость будет выше. Во втором случае, если соперник прилично реализовал свой шанс, вероятность поразить мишень для второго спортсмена снижается.


Для разделения возможных сценариев (их часто называют гипотезами) развития событий мы будем часто использовать схему "дерева вероятностей". Эта схема похожа по смыслу на дерево решений, с которым Вам, наверное, уже приходилось иметь дело. Каждая ветка представляет собой отдельный сценарий развития событий, только теперь она имеет собственное значение так называемой условной вероятности (q 1 , q 2 , q 1 -1, q 2 -1).


Эта схема очень удобна для анализа последовательных случайных событий.

Остается выяснить еще один немаловажный вопрос: откуда берутся исходные значения вероятностей в реальных ситуациях ? Ведь не с одними же монетами и игральными костями работает теория вероятностей? Обычно эти оценки берутся из статистики, а когда статистические сведения отсутствуют, мы проводим собственное исследование. И начинать его нам часто приходится не со сбора данных, а с вопроса, какие сведения нам вообще нужны.

Пример. Допустим, нам надо оценить в городе с населением в сто тысяч жителей объем рынка для нового товара, который не является предметом первой необходимости, например, для бальзама по уходу за окрашенными волосами. Рассмотрим схему "дерева вероятностей". При этом значение вероятности на каждой "ветке" нам надо приблизительно оценить. Итак, наши оценки емкости рынка:

1) из всех жителей города женщин 50%,

2) из всех женщин только 30% красят волосы часто,

3) из них только 10% пользуются бальзамами для окрашенных волос,

4) из них только 10% могут набраться смелости попробовать новый товар,

5) из них 70% обычно покупает все не у нас, а у наших конкурентов.




Решение: По закону перемножения вероятностей, определяем вероятность интересующего нас события А ={житель города покупает у нас этот новый бальзам}=0,00045.

Умножим это значение вероятности на число жителей города. В результате имеем всего 45 потенциальных покупательниц, а если учесть, что одного пузырька этого средства хватает на несколько месяцев, не слишком оживленная получается торговля.

И все-таки польза от наших оценок есть.

Во-первых, мы можем сравнивать прогнозы разных бизнес-идей, на схемах у них будут разные "развилки", и, конечно, значения вероятности тоже будут разные.

Во-вторых, как мы уже говорили, случайная величина не потому называется случайной, что она совсем ни от чего не зависит. Просто ее точное значение заранее не известно. Мы знаем, что среднее количество покупателей может быть увеличено (например, с помощью рекламы нового товара). Так что имеет смысл сосредоточить усилия на тех "развилках", где распределение вероятностей нас особенно не устраивает, на тех факторах, на которые мы в состоянии повлиять.

Рассмотрим еще один количественный пример исследования покупательского поведения.

Пример. За день продовольственный рынок посещает в среднем 10000 человек. Вероятность того, что посетитель рынка заходит в павильон молочных продуктов, равна 1/2. Известно, что в этом павильоне в среднем продается в день 500 кг различных продуктов.

Можно ли утверждать, что средняя покупка в павильоне весит всего 100 г?

Обсуждение. Конечно, нельзя. Понятно, что не каждый, кто заходил в павильон, в результате что-то там купил.




Как показано на схеме, чтобы ответить на вопрос о среднем весе покупки, мы должны найти ответ на вопрос, какова вероятность того, что человек, зашедший в павильон, что-нибудь там купит. Если таких данных в нашем распоряжении не имеется, а нам они нужны, придется их получить самим, понаблюдав некоторое время за посетителями павильона. Допустим, наши наблюдения показали, что только пятая часть посетителей павильона что-то покупает.

Как только эти оценки нами получены, задача становится уже простой. Из 10000 человек, пришедших на рынок, 5000 зайдут в павильон молочных продуктов, покупок будет только 1000. Средний вес покупки равен 500 грамм. Интересно отметить, что для построения полной картины происходящего, логика условных "ветвлений" должна быть определена на каждом этапе нашего рассуждения так же четко, как если бы мы работали с "конкретной" ситуацией, а не с вероятностями.

Задачи для самопроверки

1. Пусть есть электрическая цепь, состоящая из n последовательно соединенных элементов, каждый из которых работает независимо от остальных.




Известна вероятность p невыхода из строя каждого элемента. Определите вероятность исправной работы всего участка цепи (событие А).

2. Студент знает 20 из 25 экзаменационных вопросов. Найдите вероятность того, что студент знает предложенные ему экзаменатором три вопроса.

3. Производство состоит из четырех последовательных этапов, на каждом из которых работает оборудование, для которого вероятности выхода из строя в течение ближайшего месяца равны соответственно р 1 , р 2 , р 3 и р 4 . Найдите вероятность того, что за месяц не случится ни одной остановки производства из-за неисправности оборудования.