Регрессия устанавливает. Простая линейная регрессия

Лекция 3.

Регрессионный анализ.

1) Числовые характеристики регрессии

2) Линейная регрессия

3) Нелинейная регрессия

4) Множественная регрессия

5) Использование MS EXCEL для выполнения регрессионного анализа

Контрольно-оценочное средство - тестовые задания

1. Числовые характеристики регрессии

Регрессионный анализ — статистический метод исследования влияния одной или нескольких независимых переменных на зависимую переменную. Независимые переменные иначе называют регрессорами или предикторами, а зависимые переменные — критериальными. Терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных, а не причинно-следственные отношения.

Цели регрессионного анализа

  • Определение степени детерминированности вариации критериальной (зависимой) переменной предикторами (независимыми переменными).
  • Предсказание значения зависимой переменной с помощью независимой(-ых).
  • Определение вклада отдельных независимых переменных в вариацию зависимой.

Регрессионный анализ нельзя использовать для определения наличия связи между переменными, поскольку наличие такой связи и есть предпосылка для применения анализа.

Для проведения регрессионного анализа первоначально необходимо познакомиться с базовыми понятиями статистики и теории вероятности.

Основные числовые характеристики дискретных и непрерывных случайных величин: математическое ожидание, дисперсия и среднее квадратическое отклонение.

Случайные величине делят на две разновидности:

  • · дискретные, которые могут принимать только конкретные, заранее оговоренные значения (например, - значения чисел на верхней грани брошенной игральной кости или порядковые значения текущего месяца);
  • · непрерывные (чаще всего - значения некоторых физических величин: веса, расстояния, температуры и т.п.), которые по законам природы могут принимать любые значения, хотя бы и в некотором интервале.

Закон распределения случайной величины - это соответствие между возможными значениями дискретной случайной величины и ее вероятностями, обычно записывается в таблицу:

Статистическое определение вероятности выражается через относительную частоту случайного события, то есть находится как отношение количества случайных величин к общему числу случайных величин.

Математическим ожиданием дискретной случайной величины X называется сумма произведений значений величины X на вероятности этих значений. Математическое ожидание обозначают или M (X ) .

n

= M (X ) = x 1 p 1 + x 2 p 2 +… + x n p n = S x i p i

i =1

Рассеяние случайной величины относительно её математического ожидания определяется с помощью числовой характеристики, называемой дисперсией. Проще говоря, дисперсия - это разброс случайной величины относительно среднего значения. Для понятия сущности дисперсии рассмотрим пример. Средняя заработная плата по стране составляет около 25 тысяч рублей. Откуда берется эта цифра? Скорее всего, складываются все зарплаты и делятся на количество работников. В данном случае очень большая дисперсия (минимальная зарплата около 4 тыс. руб., а максимальная - около 100 тыс. руб.). Если бы зарплата у всех была одинаковой, то дисперсия была бы равна нулю, и разброса бы не было.

Дисперсией дискретной случайной величины X называют математическое ожидание квадрата разности случайной величины и её математического ожидания:

D = M [ ((X - M (X)) 2 ]

Используя определение математического ожидания для вычисления дисперсии, получаем формулу:

D = S (x i - M (X)) 2 · p i

Дисперсия имеет размерность квадрата случайной величины. В тех случаях, когда нужно иметь числовую характеристику рассеяния возможных значений в той же размерности, что и сама случайная величина, используют среднее квадратичное отклонение.

Средним квадратичным отклонением случайной величины называют корень квадратный из её дисперсии.

Среднее квадратичное отклонение есть мера рассеяния значений случайной величины около ее математического ожидания.

Пример.

Закон распределения случайной величины Х задан следующей таблицей:

Найти её математическое ожидание, дисперсию и среднее квадратичное отклонение.

Используем приведенные выше формулы:

М (Х) = 1 · 0,1 + 2 · 0,4 + 4 · 0,4 + 5 · 0,1 = 3

D = (1-3) 2 · 0,1 + (2 - 3) 2 · 0,4 + (4 - 3) 2 · 0,4 + (5 - 3) 2 · 0,1 = 1,6

Пример.

В денежной лотерее разыгрывается 1 выигрыш в 1000 рублей, 10 выигрышей по 100 рублей и 100 выигрышей по 1 рублю при общем числе билетов 10000. Составьте закон распределения случайного выигрыша Х для владельца одного лотерейного билета и определите математическое ожидание, дисперсию и среднее квадратичное отклонение случайной величины.

X 1 = 1000, Х 2 = 100, Х 3 = 1, Х 4 = 0,

Р 1 = 1/10000 = 0,0001, Р 2 = 10/10000 = 0,001, Р 3 = 100/10000 = 0,01, Р 4 = 1 - (Р 1 + Р 2 + Р 3) = 0,9889.

Результаты поместим в таблицу:

Математическое ожидание - сумма парных произведений значения случайной величины на их вероятность. Для данной задачи его целесообразно вычислить по формуле

1000 · 0,0001 + 100 · 0,001 + 1 · 0,01 + 0 · 0,9889 = 0,21 рубля.

Получили настоящую «справедливую» цену билета.

D = S (x i - M (X)) 2 · p i = (1000 - 0,21) 2 0,0001 + (100 - 0,21) 2 0,001 +

+ (1 - 0,21) 2 0,01 + (0 - 0,21) 2 0,9889 ≈ 109,97

Функция распределения непрерывных случайных величин

Величину, которая в результате испытания примет одно возможное значение (при этом заранее неизвестно какое), называется случайной величиной. Как говорилось выше, случайные величины бывают дискретные (прерывные) и непрерывные.

Дискретной называют случайную величину, принимающую отдельные друг от друга возможные значения с определенными вероятностями, которые можно пронумеровать.

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного интервала.

До этого момента мы ограничивались только одной “разновидностью” случайных величин - дискретных, т.е. принимающих конечные значения.

Но теория и практика статистики требуют использовать понятие непрерывной случайной величины - допускающей любые числовые значения, из какого - либо интервала.

Закон распределения непрерывной случайной величины удобно задавать с помощью так называемой функции плотности вероятности. f (х). Вероятность Р (a < X < b) того, что значение, принятое случайной величиной Х, попадет в промежуток (a; b), определяется равенством

Р (a < X < b) = ∫ f (x ) dx

График функции f (х) называется кривой распределения. Геометрически вероятность попадания случайной величины в промежуток (a; b), равна площади соответствующей криволинейной трапеции, ограниченной кривой распределения, осью Ох и прямыми х = а, х = b.

P(a£X

Если от сложного события вычесть конечное либо счетное множество, вероятность наступления нового события останется неизменной.

Функция f(x) - числовая скалярная функция действительного аргумента x называется плотностью вероятности, и существует в точке x, если в этой точке существует предел:

Свойства плотности вероятности:

  1. Плотность вероятности является неотрицательной функцией, т. е. f(x) ≥ 0

(если все значения случайной величины Х заключены в промежутке (a;b), то последнее

равенство можно записать в виде ∫ f (x) dx = 1).

Рассмотрим теперь функцию F(х) = Р (Х < х). Эта функция называется функцией распределения вероятности случайной величины Х. Функция F(х) существует как для дискретных, так и для непрерывных случайных величин. Если f (x) - функция плотности распределения вероятности

непрерывной случайной величины Х, то F (х) = ∫ f(x) dx = 1).

Из последнего равенства следует, что f (x) = F" (x)

Иногда функцию f(x) называют дифференциальной функцией распределения вероятности, а функцию F(x) - интегральной функцией распределения вероятности.

Отметим важнейшие свойства функции распределения вероятности:

  1. F (х) - неубывающая функция.
  2. F (- ∞) = 0.
  3. F (+ ∞) = 1.

Понятие функции распределения является центральным в теории вероятностей. Используя это понятие, можно дать другое определение непрерывной случайной величины. Случайная величина называется непрерывной, если ее интегральная функция распределения F(х) непрерывна.

Числовые характеристики непрерывных случайных величин

Математическое ожидание, дисперсия и другие параметры любых случайных величин практически всегда вычисляются по формулам, вытекающим из закона распределения.

Для непрерывной случайной величины математическое ожидание вычисляется по формуле:

М (Х) = ∫ x · f(x ) dx

Дисперсия:

D (X) = ∫ (x - М (Х)) 2 f (x ) dx или D (X) = ∫ x 2 f(x ) dx - (М (Х)) 2

2. Линейная регрессия

Пусть составляющие Х и Y двумерной случайной величины (Х, Y) зависимы. Будем считать, что одну из них можно приближенно представить как линейную функцию другой, например

Y ≈ g(Х) = α + βХ, и определим параметры α и β с помощью метода наименьших квадратов.

Определение. Функция g(Х) = α + βХ называется наилучшим приближением Y в смысле метода наименьших квадратов, если математическое ожидание М(Y - g(Х)) 2 принимает наименьшее возможное значение; функцию g(Х) называют среднеквадратической регрессией Y на Х.

Теорема Линейная средняя квадратическая регрессия Y на Х имеет вид:

где - коэффициент корреляции Х иY.

Коэффициенты уравнения.

Можно проверить, что при этих значениях функция функция F(α, β)

F (α, β ) = M (Y - α - βX )² имеет минимум, что доказывает утверждение теоремы.

Определение. Коэффициент называется коэффициентом регрессии Y на Х , а прямая - - прямой среднеквадратической регрессии Y на Х .

Подставив координаты стационарной точки в равенство, можно найти минимальное значение функции F(α, β), равное Эта величина называется остаточной дисперсией Y относительно Х и характеризует величину ошибки, допускаемой при замене Y на

g(Х) = α+βХ. При остаточная дисперсия равна 0, то есть равенство является не приближенным, а точным. Следовательно, при Y и Х связаны линейной функциональной зависимостью. Аналогично можно получить прямую среднеквадратической регрессии Х на Y:

и остаточную дисперсию Х относительно Y. При обе прямые регрессии совпадают. Сопоставив уравнения регрессии У на Х и Х на У и решив систему из уравнений, можно найти точку пересечения прямых регрессии - точку с координатами (т х, т у), называемую центром совместного распределения величин Х и Y.

Алгоритм составления уравнений регрессии рассмотрим из учебника В. Е. Гмурмана «Теория вероятности и математическая статистика» стр. 256.

1) Составить расчетную таблицу, в которой будут записаны номера элементов выборки, варианты выборки, их квадраты и произведение.

2) Вычислить сумму по всем столбцам, кроме номера.

3) Вычислить средние значения для каждой величины, дисперсии и средне квадратические отклонения.

5) Проверить гипотезу о существовании связи между Х и У.

6) Составить уравнения обеих линий регрессии и изобразить графики этих уравнений.

Угловой коэффициент прямой линии регрессии У на Х - это выборочный коэффициент регрессии

Коэффициент b=

Получим искомое уравнение линии регрессии У на Х:

У = 0,202 Х + 1,024

Аналогично уравнение регрессии Х на У:

Угловой коэффициент прямой линии регрессии У на Х - это выборочный коэффициент регрессии pxy:

Коэффициент b=

Х = 4,119У - 3,714

3. Нелинейная регрессия

Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций.

Различают два класса нелинейных регрессий:

1. Регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, например:

Полиномы разных степеней

Равносторонняя гипербола - ;

Полулогарифмическая функция - .

2. Регрессии, нелинейные по оцениваемым параметрам, например:

Степенная - ;

Показательная - ;

Экспоненциальная - .

Регрессии нелинейные по включенным переменным приводятся к линейному виду простой заменой переменных, а дальнейшая оценка параметров производится с помощью метода наименьших квадратов. Рассмотрим некоторые функции.

Парабола второй степени приводится к линейному виду с помощью замены: . В результате приходим к двухфакторному уравнению, оценка параметров которого при помощи Метода наименьших квадратов приводит к системе уравнений:

Парабола второй степени обычно применяется в случаях, когда для определенного интервала значений фактора меняется характер связи рассматриваемых признаков: прямая связь меняется на обратную или обратная на прямую.

Равносторонняя гипербола может быть использована для характеристики связи удельных расходов сырья, материалов, топлива от объема выпускаемой продукции, времени обращения товаров от величины товарооборота. Классическим ее примером является кривая Филлипса, характеризующая нелинейное соотношение между нормой безработицы x и процентом прироста заработной платы y .

Гипербола приводится к линейному уравнению простой заменой: . Также можно использовать Метод наименьших квадратов для составления системы линейных уравнений.

Аналогичным образом приводятся к линейному виду зависимости: , и другие.

Равносторонняя гипербола и полулогарифмическая кривая используют для описания кривой Энгеля (математическое описание взаимосвязи доли расходов на товары длительного пользования и общих сумм расходов (или доходов)). Уравнения, в которых входят, применяются в исследованиях урожайности, трудоемкости сельскохозяйственного производства.

4. Множественная регрессия

Множественная регрессия - уравнение связи с несколькими независимыми переменными:

где - зависимая переменная (результативный признак);

Независимые переменные (факторы).

Для построения уравнения множественной регрессии чаще используются следующие функции:

линейная -

степенная -

экспонента -

гипербола - .

Можно использовать и другие функции, приводимые к линейному виду.

Для оценки параметров уравнения множественной регрессии применяют метод наименьших квадратов (МНК). Для линейных уравнений и нелинейных уравнений, приводимых к линейным, строится следующая система нормальных уравнений, решение которой позволяет получить оценки параметров регрессии:

Для ее решения может быть применен метод определителей:

где - определитель системы;

Частные определители; которые получаются путем замены соответствующего столбца матрицы определителя системы данными левой части системы.

Другой вид уравнения множественной регрессии - уравнение регрессии в стандартизированном масштабе, к уравнению множественной регрессии в стандартизированном масштабе применим МНК.

5. Использование MS EXCEL для выполнения регрессионного анализа

Регрессионный анализ устанавливает формы зависимости между случайной величиной Y (зависимой) и значениями одной или нескольких переменных величин (независимых), причем значения последних считаются точно заданными. Такая зависимость обычно определяется некоторой математической моделью (уравнением регрессии), содержащей несколько неизвестных параметров. В ходе регрессионного анализа на основании выборочных данных находят оценки этих параметров, определяются статистические ошибки оценок или границы доверительных интервалов и проверяется соответствие (адекватность) принятой математической модели экспериментальным данным.

В линейном регрессионном анализе связь между случайными величинами предполагается линейной. В самом простом случае в парной линейной регрессионной модели имеются две переменные Х и Y. И требуется по n парам наблюдений (X1, Y1), (X2, Y2), ..., (Xn, Yn) построить (подобрать) прямую линию, называемую линией регрессии, которая «наилучшим образом» приближает наблюдаемые значения. Уравнение этой линии y=аx+b является регрессионным уравнением. С помощью регрессионного уравнения можно предсказать ожидаемое значение зависимой величины y, соответствующее заданному значению независимой переменной x. В случае, когда рассматривается зависимость между одной зависимой переменной Y и несколькими независимыми X1, X2, ..., Xm, говорят о множественной линейной регрессии.

В этом случае регрессионное уравнение имеет вид

y = a 0 +a 1 x 1 +a 2 x 2 +…+a m x m ,

где a0, a1, a2, …, am - требующие определения коэффициенты регрессии.

Коэффициенты уравнения регрессии определяются при помощи метода наименьших квадратов, добиваясь минимально возможной суммы квадратов расхождений реальных значений переменной Y и вычисленных по регрессионному уравнению. Таким образом, например, уравнение линейной регрессии может быть построено даже в том случае, когда линейная корреляционная связь отсутствует.

Мерой эффективности регрессионной модели является коэффициент детерминации R2 (R-квадрат). Коэффициент детерминации может принимать значения между 0 и 1 определяет, с какой степенью точности полученное регрессионное уравнение описывает (аппроксимирует) исходные данные. Исследуется также значимость регрессионной модели с помощью F-критерия (Фишера) и достоверность отличия коэффициентов a0, a1, a2, …, am от нуля проверяется с помощью критерия Стьюдента.

В Excel экспериментальные данные аппроксимируются линейным уравнением до 16 порядка:

y = a0+a1x1+a2x2+…+a16x16

Для получения коэффициентов линейной регрессии может быть использована процедура «Регрессия» из пакета анализа. Также полную информацию об уравнении линейной регрессии дает функция ЛИНЕЙН. Кроме того, могут быть использованы функции НАКЛОН и ОТРЕЗОК для получения параметров регрессионного уравнения и функция ТЕНДЕНЦИЯ и ПРЕДСКАЗ для получения предсказанных значений Y в требуемых точках (для парной регрессии).

Рассмотрим подробно применение функции ЛИНЕЙН (известные_y, [известные_x], [константа], [статистика]): известные_у - диапазон известных значений зависимого параметра Y. В парном регрессионном анализе может иметь любую форму; в множественном должен быть строкой либо столбцом; известные_х - диапазон известных значений одного или нескольких независимых параметров. Должен иметь ту же форму, что и диапазон Y (для нескольких параметров - соответственно несколько столбцов или строк); константа - логический аргумент. Если исходя из практического смысла задачи регрессионного анализа необходимо, чтобы линия регрессии проходила через начало координат, то есть свободный коэффициент был равен 0, значение этого аргумента следует положить равным 0 (или «ложь»). Если значение положено 1 (или «истина») или опущено, то свободный коэффициент вычисляется обычным образом; статистика - логический аргумент. Если значение положено 1 (или «истина»), то дополнительно возвращается регрессионная статистика (см таблицу), используемая для оценки эффективности и значимости модели. В общем случае для парной регрессии y=аx+b результат применения функции ЛИНЕЙН имеет вид:

Таблица. Выводной диапазон функции ЛИНЕЙН для парного регрессионного анализа

В случае множественного регрессионного анализа для уравнения y=a0+a1x1+a2x2+…+amxm в первой строке выводятся коэффициенты am,…,a1,а0, во второй - стандартные ошибки для этих коэффициентов. В 3-5 строках за исключением первых двух столбцов, заполненных регрессионной статистикой, будет получено значение #Н/Д.

Вводить функцию ЛИНЕЙН следует как формулу массива, выделив вначале массив нужного размера для результата (m+1 столбец и 5 строк, если требуется регрессионная статистика) и завершив ввод формулы нажатием CTRL+SHIFT+ENTER.

Результат для нашего примера:

Кроме этого в программе имеется встроенная функция - Анализ данных на вкладке Данные.

С помощью нее можно также выполнять регрессионный анализ:

На слайде - результат регрессионного анализа, выполненного с помощью Анализа данных.

ВЫВОД ИТОГОВ

Регрессионная статистика

Множественный R

R-квадрат

Нормированный R-квадрат

Стандартная ошибка

Наблюдения

Дисперсионный анализ

Значимость F

Регрессия

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Нижние 95,0%

Верхние 95,0%

Y-пересечение

Переменная X 1

Уравнения регрессии, которые мы смотрели ранее также построены в MS Excel. Для их выполнения сначала строится Точечная диаграмма, затем через контекстное меню выбираем - Добавить линию тренда. В новом окне ставим галочки - Показывать уравнение на диаграмме и поместить на диаграмму величину достоверности апроксимации (R^2).

Литература:

  1. Теория вероятностей и математическая статистика. Гмурман В. Е. Учебное пособие для вузов. - Изд. 10-е, стер. - М.: Высш. шк., 2010. - 479с.
  2. Высшая математика в упражнениях и задачах. Учебное пособие для вузов / Данко П. Е., Попов А. Г., Кожевникова Т. Я., Данко С. П. В 2 ч. - Изд. 6-е, стер. - М.: ООО «Издательство Оникс»: ООО «Издательство «Мир и образование» , 2007. - 416 с.
    1. 3. http://www.machinelearning.ru/wiki/index.php?title=%D0%A0%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D1%8F - некоторые сведения о регрессионном анализе

Характеристика причинных зависимостей

Причинно-следственные отношения – это связь явлений и процессов, когда изменение одного из них – причины – ведет к изменению другого – следствия.

Признаки по их значению для изучения взаимосвязи делятся на два класса.

Признаки, обуславливающие изменения других, связанных с ними признаков, называются факторными (или факторами).

Признаки, изменяющиеся под действием факторных признаков, являются результативными.

Различают следующие формы связи: функциональную и стохастическую. Функциональной называют такую связь, при которой определенному значению факторного признака соответствует одно и только одно значение результативного признака. Функциональная связь проявляется во всех случаях наблюдения и для каждой конкретной единицы исследуемой совокупности.

Функциональную связь можно представить следующим уравнением:
y i =f(x i), где: y i - результативный признак; f(x i) - известная функция связи результативного и факторного признаков; x i - факторный признак.
В реальной природе функциональных связей нет. Они являются лишь абстракциями, полезными при анализе явлений, но упрощающими реальность.

Стохастическая (статистическая или случайная) связь представляет собой связь между величинами, при которой одна из них реагирует на изменение другой величины или других величин изменением закона распределения. Иными словами, при данной связи разным значениям одной переменной соответствуют разные распределения другой переменной. Это обуславливается тем, что зависимая переменная, кроме рассматриваемых независимых, подвержена влиянию ряда неучтенных или неконтролируемых случайных факторов, а также некоторых неизбежных ошибок измерения переменных. В связи с тем, что значения зависимой переменной подвержены случайному разбросу, они не могут быть предсказаны с достаточной точностью, а могут быть только указаны с определенной вероятностью.

В силу неоднозначности стохастической зависимости между Y и X, в частности представляет интерес усредненная по х схема зависимости, т.е. закономерность в изменении среднего значения – условного математического ожидания Мх(У) (математического ожидания случайной переменной У, найденного при условии, что переменная Х приняла значение х) в зависимости от х.

Частным случаем стохастической связи является корреляционная связь. Корреля́ция (от лат. correlatio - соотношение, взаимосвязь). Прямое токование термина корреляция - стохастическая, вероятная, возможная связь между двумя (парная) или несколькими (множественная) случайными величинами.

Корреляционной зависимостью между двумя переменными также называют статистическую взаимосвязь между этими переменными, при которой каждому значению одной переменной соответствует определенное среднее значение, т.е. условное математическое ожидание другой. Корреляционная зависимость является частным случаем стохастиче­ской зависимости, при которой изменение значений факторных признаков (х 1 х 2 ..., х n) влечет за собой изменение среднего значения результативно­го признака.



Принято различать следующие виды корреляции:

1. Парная корреляция – связь между двумя признаками (результативным и факторным или двумя факторными).

2. Частная корреляция – зависимость между результативным и одним факторным признаками при фиксированном значении других факторных признаков, включенных в исследование.

3. Множественная корреляция – зависимость результативного и двух или более факторных признаков, включенных в исследование.

Назначение регрессионного анализа

Аналитической формой представления причинно-следственных отношений являются регрессионные модели. Научная обоснованность и популярность регрессионного анализа делает его одним из основных математических средств моделирования исследуемого явления. Этот метод применяется для сглаживания экспериментальных данных и получения количественных оценок сравнительного влияния различных факторов на результативную переменную.

Регрессионный анализ заключается в определении аналитического выражения связи, в котором изменение одной величины (зависимой переменной или результативного признака) обусловлено влиянием одной или нескольких независимых величин (факторов или предикторов), а множество всех прочих факторов, также оказывающих влияние на зависимую величину, принимается за постоянные и средние значения.

Цели регрессионного анализа:

Оценка функциональной зависимости условного среднего значения результативного признака у от факторных (х 1 ,х 2 , …, х n);

Предсказание значения зависимой переменной с помощью независимой(-ых).

Определение вклада отдельных независимых переменных в вариацию зависимой переменной.

Регрессионный анализ нельзя использовать для определения наличия связи между переменными, поскольку наличие такой связи и есть предпосылка для применения анализа.

В регрессионном анализе зара­нее подразумевается наличие причинно-следственных связей между ре­зультативным (У) и факторными х 1 , х 2 ..., х n признаками.

Функция , оп исывающая зависимость показателя от параметров, называется уравнением (функцией) регрессии 1 . Уравнение регрессии показывает ожидаемое значение зависимой переменной при определенных значениях независимых переменных .
В зависимости от количества включенных в модель факторов Х модели делятся на однофакторные (парная модель регрессии) и многофакторные (модель множественной регрессии). В зависимости от вида функции модели делятся на линейные и нелинейные.

Парная регрессионная модель

В силу воздействия неучтенных случайных факторов и причин отдельные наблюдения у будут в большей или меньшей мере отклоняться от функции регрессии f(х). В этом случае уравнение взаимосвязи двух переменных (парная регрессионная модель) может быть представлено в виде:

Y=f(X) + ɛ,

где ɛ - случайная переменная, характеризующая отклонение от функции регрессии. Эту переменную называют возмущающей или возмущением (остатком или ошибкой). Таким образом, в регрессионной модели зависимая переменная Y есть некоторая функция f(X) с точностью до случайного возмущения ɛ.

Рассмотрим классическую линейную модель парной регрессии (КЛМПР). Она имеет вид

у i =β 0 +β 1 х i +ɛ i (i=1,2, …, n), (1)

где у i –объясняемая (результирующая, зависимая, эндогенная переменная);х i – объясняющая (предикторная, факторная, экзогенная) переменная; β 0 , β 1 – числовые коэффициенты; ɛ i – случайная (стохастическая) составляющая или ошибка.

Основные условия (предпосылки, гипотезы) КЛМПР:

1) х i – детерминированная (неслучайная) величина, при этом предполагается, что среди значений х i – не все одинаковые.

2) Математическое ожидание (среднее значение) возмущения ɛ i равно нулю:

М[ɛ i ]=0 (i=1,2, …, n).

3) Дисперсия возмущения постоянна для любых значений i (условие гомоскедастичности):

D[ɛ i ]=σ 2 (i=1,2, …, n).

4) Возмущения для разных наблюдений являются некоррелированными:

cov[ɛ i , ɛ j ]=M[ɛ i , ɛ j ]=0 при i≠j,

где cov[ɛ i , ɛ j ] – коэффициент ковариации (корреляционный момент).

5) Возмущения являются нормально распределенными случайными величинами с нулевым средним значением и дисперсией σ 2:

ɛ i ≈ N(0, σ 2).

Для получения уравнения регрессии достаточно первых четырех предпосылок. Требование выполнения пятой предпосылки необходимо для оценки точности уравнения регрессии и его параметров.

Замечание: Внимание к линейным связям объясняется ограниченной вариацией переменных и тем, что в большинстве случаев нелинейные формы связи для выполнения расчётов преобразуют (путём логарифмирования или замены переменных) в линейную форму.

Традиционный метод наименьших квадратов (МНК)

Оценкой модели по выборке является уравнение

ŷ i = a 0 + a 1 x i (i=1,2, …, n), (2)

где ŷ i – теоретические (аппроксимирующие) значения зависимой переменной, полученные по уравнению регрессии; a 0 , a 1 - коэффициенты (параметры) уравнения регрессии (выборочные оценки коэффициентов β 0 , β 1 соответственно).

Согласно МНК неизвестные параметры a 0 , a 1 выбирают так, чтобы сумма квадратов отклонений значений ŷ i от эмпирических значений y i (остаточная сумма квадратов) была минимальной:

Q e =∑e i 2 = ∑(y i – ŷ i) 2 = ∑(yi – (a 0 + a 1 x i)) 2 → min, (3)

где e i = y i - ŷ i – выборочная оценка возмущения ɛ i , или остаток регрессии.

Задача сводится к отысканию таких значений параметров a 0 и a 1 , при которых функция Q e принимает наименьшее значение. Заметим, что функция Q e = Q e (a 0 , a 1) есть функция двух переменных a 0 и a 1 до тех пор, пока мы не нашли, а затем зафиксировали их «наилучшие» (в смысле метода наименьших квадратов) значения, а х i , y i – постоянные числа, найденные экспериментально.

Необходимые условия экстремума (3) находятся путем приравнивания к нулю частных производных этой функции двух переменных. В результате получим систему двух линейных уравнений, которая называется системой нормальных уравнений:

(4)

Коэффициент a 1 – выборочный коэффициент регрессии у на х, который показывает на сколько единиц в среднем изменяется переменная у при изменении переменной х на одну единицу своего измерения, то есть вариацию у, приходящуюся на единицу вариации х. Знак a 1 указывает направление этого изменения. Коэффициент a 0 – смещение, согласно (2) равен значению ŷ i при х=0 и может не иметь содержательной интерпретации. За это иногда зависимую переменную называют откликом.

Статистические свойства оценок коэффициентов регрессии:

Оценки коэффициентов a 0 , a 1 являются несмещенными;

Дисперсии оценок a 0 , a 1 уменьшаются (точность оценок увеличивается) при увеличении объема выборки n;

Дисперсия оценки углового коэффициента a 1 уменьшается при увеличении и поэтому желательно выбирать х i так, чтобы их разброс вокруг среднего значения был большим;

При х¯ > 0 (что представляет наибольший интерес) между a 0 и a 1 имеется отрицательная статистическая связь (увеличение a 1 приводит к уменьшению a 0).

Понятия корреляции и регрессии непосредственно связаны меж­ду собой. В корреляционном и регрессионном анализе много общих вычислительных приемов. Они используются для выявления причин­но-следственных соотношений между явлениями и процессами. Одна­ко, если корреляционный анализ позволяет оценить силу и направ­ление стохастической связи, то регрессионный анализ - еще и фор­му зависимости.

Регрессия может быть:

а) в зависимости от числа явлений (переменных):

Простой (регрессия между двумя переменными);

Множественной (регрессия между зависимой переменной (y) и несколькими объясняющими ее переменными (х1, х2...хn);

б) в зависимости от формы:

Линейной (отображается линейной функцией, а между изучае­мыми переменными существуют линейные соотношения);

Нелинейной (отображается нелинейной функцией, между изу­чаемыми переменными связь носит нелинейный характер);

в) по характеру связи между включенными в рассмотрение пе­ременными:

Положительной (увеличение значения объясняющей переменной приводит к увеличению значения зависимой переменной и наоборот);

Отрицательной (с увеличением значения объясняющей переменной значение объясняемой переменной уменьшается);

г) по типу:

Непосредственной (в этом случае причина оказывает прямое воздействие на следствие, т.е. зависимая и объясняющая перемен­ные связаны непосредственно друг с другом);

Косвенной (объясняющая переменная оказывает опосредован­ное действие через третью или ряд других переменных на зависимую переменную);

Ложной (нонсенс регрессия) - может возникнуть при поверх­ностном и формальном подходе к исследуемым процессам и явлениям. Примером бессмысленных является регрессия, устанавливающая связь между уменьшением количества потребляемого алкоголя в нашей стране и уменьшением продажи стирального порошка.

При проведении регрессионного анализа решаются следующие основные задачи:

1. Определение формы зависимости.

2. Определение функции регрессии. Для этого используют ма­тематическое уравнение того или иного типа, позволяющее, во-пер­вых, установить общую тенденцию изменения зависимой перемен­ной, а, во-вторых, вычислить влияние объясняющей переменной (или нескольких переменных) на зависимую переменную.

3. Оценка неизвестных значений зависимой переменной. Полу­ченная математическая зависимость (уравнение регрессии) позволя­ет определять значение зависимой переменной как в пределах ин­тервала заданных значений объясняющих переменных, так и за его пределами. В последнем случае регрессионный анализ выступает в качестве полезного инструмента при прогнозировании изменений со­циально-экономических процессов и явлений (при условии сохране­ния существующих тенденций и взаимосвязей). Обычно длина вре­менного отрезка, на который осуществляется прогнозирование, выбирается не более половины интервала времени, на котором прове­дены наблюдения исходных показателей. Можно осуществить как пас­сивный прогноз, решая задачу экстраполяции, так и активный, ведя рассуждения по известной схеме "если..., то" и подставляя раз­личные значения в одну или несколько объясняющих переменных рег­рессии.



Для построения регрессии используется специальный метод, получивший название метода наименьших квадратов . Этот метод име­ет преимущества перед другими методами сглаживания: сравнительно простое математическое определение искомых параметров и хорошее теоретическое обоснование с вероятностной точки зрения.

При выборе модели регрессии одним из существенных требова­ний к ней является обеспечение наибольшей возможной простоты, позволяющей получить решение с достаточной точностью. Поэтому для установления статистических связей вначале, как правило, рассматривают модель из класса линейных функций (как наиболее простейшего из всех возможных классов функций):

где bi, b2...bj - коэффициенты, определяющие влияние независимых переменных хij на величину yi; аi - свободный член; ei - слу­чайное отклонение, которое отражает влияние неучтенных факторов на зависимую переменную; n - число независимых переменных; N ­число наблюдений, причем должно соблюдаться условие (N . n+1).

Линейная модель может описывать весьма широкий класс различных задач. Однако на практике, в частности в социально-эконо­мических системах, подчас затруднительно применение линейных мо­делей из-за больших ошибок аппроксимации. Поэтому нередко ис­пользуются функции нелинейной множественной регрессии, допускающие линеаризацию. К их числу, например, относится производст­венная функция (степенная функция Кобба-Дугласа), нашедшая при­менение в различных социально-экономических исследованиях. Она имеет вид:

где b 0 - нормировочный множитель, b 1 ...b j - неизвестные коэффи­циенты, e i - случайное отклонение.

Используя натуральные логарифмы, можно преобразовать это уравнение в линейную форму:

Полученная модель позволяет использовать стандартные проце­дуры линейной регрессии, описанные выше. Построив модели двух видов (аддитивные и мультипликативные), можно выбрать наилучшие и провести дальнейшие исследования с меньшими ошибками аппрокси­мации.

Существует хорошо развитая система подбора аппроксимирующих функций - методика группового учета аргументов (МГУА) .

О правильности подобранной модели можно судить по результа­там исследования остатков, являющихся разностями между наблю­даемыми величинами y i и соответствующими прогнозируемыми с по­мощью регрессионного уравнения величинами y i . В этом случае для проверки адекватности модели рассчитывается средняя ошибка ап­проксимации:

Модель считается адекватной, если e находится в пределах не более 15%.

Особо подчеркнем, что применительно к социально-экономичес­ким системам далеко не всегда выполняются основные условия адек­ватности классической регрессионной модели.

Не останавливаясь на всех причинах возникающей неадекват­ности, назовем лишь мультиколлинеарность - самую сложную пробле­му эффективного применения процедур регрессионного анализа при изучении статистических зависимостей. Под мультиколлинеарностью понимается наличие линейной связи между объясняющими переменны­ми.

Это явление:

а) искажает смысл коэффициентов регрессии при их содержа­тельной интерпретации;

б) снижает точность оценивания (возрастает дисперсия оце­нок);

в) усиливает чувствительность оценок коэффициентов к выбо­рочным данным (увеличение объема выборки может сильно повлиять на значения оценок).

Существуют различные приемы снижения мультиколлинеарности. Наиболее доступный способ - устранение одной из двух переменных, если коэффициент корреляции между ними превышает значение, рав­ное по абсолютной величине 0,8. Какую из переменных оставить ре­шают, исходя из содержательных соображений. Затем вновь прово­дится расчет коэффициентов регрессии.

Использование алгоритма пошаговой регрессии позволяет пос­ледовательно включать в модель по одной независимой переменной и анализировать значимость коэффициентов регрессии и мультиколли­неарность переменных. Окончательно в исследуемой зависимости ос­таются только те переменные, которые обеспечивают необходимую значимость коэффициентов регрессии и минимальное влияние мульти­коллинеарности.

В предыдущих заметках предметом анализа часто становилась отдельная числовая переменная, например, доходность взаимных фондов, время загрузки Web-страницы или объем потребления безалкогольных напитков. В настоящей и следующих заметках мы рассмотрим методы предсказания значений числовой переменной в зависимости от значений одной или нескольких других числовых переменных.

Материал будет проиллюстрирован сквозным примером. Прогнозирование объема продаж в магазине одежды. Сеть магазинов уцененной одежды Sunflowers на протяжении 25 лет постоянно расширялась. Однако в настоящее время у компании нет систематического подхода к выбору новых торговых точек. Место, в котором компания собирается открыть новый магазин, определяется на основе субъективных соображений. Критериями выбора являются выгодные условия аренды или представления менеджера об идеальном местоположении магазина. Представьте, что вы - руководитель отдела специальных проектов и планирования. Вам поручили разработать стратегический план открытия новых магазинов. Этот план должен содержать прогноз годового объема продаж во вновь открываемых магазинах. Вы полагаете, что торговая площадь непосредственно связана с объемом выручки, и хотите учесть этот факт в процессе принятия решения. Как разработать статистическую модель, позволяющую прогнозировать годовой объем продаж на основе размера нового магазина?

Как правило, для предсказания значений переменной используется регрессионный анализ. Его цель - разработать статистическую модель, позволяющую предсказывать значения зависимой переменной, или отклика, по значениям, по крайней мере одной, независимой, или объясняющей, переменной. В настоящей заметке мы рассмотрим простую линейную регрессию - статистический метод, позволяющий предсказывать значения зависимой переменной Y по значениям независимой переменной X . В последующих заметках будет описана модель множественной регрессии, предназначенная для предсказания значений независимой переменной Y по значениям нескольких зависимых переменных (Х 1 , Х 2 , …, X k ).

Скачать заметку в формате или , примеры в формате

Виды регрессионных моделей

где ρ 1 – коэффициент автокорреляции; если ρ 1 = 0 (нет автокорреляции), D ≈ 2; если ρ 1 ≈ 1 (положительная автокорреляции), D ≈ 0; если ρ 1 = -1 (отрицательная автокорреляции), D ≈ 4.

На практике применение критерия Дурбина-Уотсона основано на сравнении величины D с критическими теоретическими значениями d L и d U для заданного числа наблюдений n , числа независимых переменных модели k (для простой линейной регрессии k = 1) и уровня значимости α. Если D < d L , гипотеза о независимости случайных отклонений отвергается (следовательно, присутствует положительная автокорреляция); если D > d U , гипотеза не отвергается (то есть автокорреляция отсутствует); если d L < D < d U , нет достаточных оснований для принятия решения. Когда расчётное значение D превышает 2, то с d L и d U сравнивается не сам коэффициент D , а выражение (4 – D ).

Для вычисления статистики Дурбина-Уотсона в Excel обратимся к нижней таблице на рис. 14 Вывод остатка . Числитель в выражении (10) вычисляется с помощью функции =СУММКВРАЗН(массив1;массив2), а знаменатель =СУММКВ(массив) (рис. 16).

Рис. 16. Формулы расчета статистики Дурбина-Уотсона

В нашем примере D = 0,883. Основной вопрос заключается в следующем - какое значение статистики Дурбина-Уотсона следует считать достаточно малым, чтобы сделать вывод о существовании положительной автокорреляции? Необходимо соотнести значение D с критическими значениями (d L и d U ), зависящими от числа наблюдений n и уровня значимости α (рис. 17).

Рис. 17. Критические значения статистики Дурбина-Уотсона (фрагмент таблицы)

Таким образом, в задаче об объеме продаж в магазине, доставляющем товары на дом, существуют одна независимая переменная (k = 1), 15 наблюдений (n = 15) и уровень значимости α = 0,05. Следовательно, d L = 1,08 и d U = 1,36. Поскольку D = 0,883 < d L = 1,08, между остатками существует положительная автокорреляция, метод наименьших квадратов применять нельзя.

Проверка гипотез о наклоне и коэффициенте корреляции

Выше регрессия применялась исключительно для прогнозирования. Для определения коэффициентов регрессии и предсказания значения переменной Y при заданной величине переменной X использовался метод наименьших квадратов. Кроме того, мы рассмотрели среднеквадратичную ошибку оценки и коэффициент смешанной корреляции. Если анализ остатков подтверждает, что условия применимости метода наименьших квадратов не нарушаются, и модель простой линейной регрессии является адекватной, на основе выборочных данных можно утверждать, что между переменными в генеральной совокупности существует линейная зависимость.

Применение t -критерия для наклона. Проверяя, равен ли наклон генеральной совокупности β 1 нулю, можно определить, существует ли статистически значимая зависимость между переменными X и Y . Если эта гипотеза отклоняется, можно утверждать, что между переменными X и Y существует линейная зависимость. Нулевая и альтернативная гипотезы формулируются следующим образом: Н 0: β 1 = 0 (нет линейной зависимости), Н1: β 1 ≠ 0 (есть линейная зависимость). По определению t -статистика равна разности между выборочным наклоном и гипотетическим значением наклона генеральной совокупности, деленной на среднеквадратичную ошибку оценки наклона:

(11) t = (b 1 β 1 ) / S b 1

где b 1 – наклон прямой регрессии по выборочным данным, β1 – гипотетический наклон прямой генеральной совокупности, , а тестовая статистика t имеет t -распределение с n – 2 степенями свободы.

Проверим, существует ли статистически значимая зависимость между размером магазина и годовым объемом продаж при α = 0,05. t -критерий выводится наряду с другими параметрами при использовании Пакета анализа (опция Регрессия ). Полностью результаты работы Пакета анализа приведены на рис. 4, фрагмент, относящийся к t-статистике – на рис. 18.

Рис. 18. Результаты применения t

Поскольку число магазинов n = 14 (см. рис.3), критическое значение t -статистики при уровне значимости α = 0,05 можно найти по формуле: t L =СТЬЮДЕНТ.ОБР(0,025;12) = –2,1788, где 0,025 – половина уровня значимости, а 12 = n – 2; t U =СТЬЮДЕНТ.ОБР(0,975;12) = +2,1788.

Поскольку t -статистика = 10,64 > t U = 2,1788 (рис. 19), нулевая гипотеза Н 0 отклоняется. С другой стороны, р -значение для Х = 10,6411, вычисляемое по формуле =1-СТЬЮДЕНТ.РАСП(D3;12;ИСТИНА), приближенно равно нулю, поэтому гипотеза Н 0 снова отклоняется. Тот факт, что р -значение почти равно нулю, означает, что если бы между размерами магазинов и годовым объемом продаж не существовало реальной линейной зависимости, обнаружить ее с помощью линейной регрессии было бы практически невозможно. Следовательно, между средним годовым объемом продаж в магазинах и их размером существует статистически значимая линейная зависимость.

Рис. 19. Проверка гипотезы о наклоне генеральной совокупности при уровне значимости, равном 0,05, и 12 степенях свободы

Применение F -критерия для наклона. Альтернативным подходом к проверке гипотез о наклоне простой линейной регрессии является использование F -критерия. Напомним, что F -критерий применяется для проверки отношения между двумя дисперсиями (подробнее см. ). При проверке гипотезы о наклоне мерой случайных ошибок является дисперсия ошибки (сумма квадратов ошибок, деленная на количество степеней свободы), поэтому F -критерий использует отношение дисперсии, объясняемой регрессией (т.е. величины SSR , деленной на количество независимых переменных k ), к дисперсии ошибок (MSE = S Y X 2 ).

По определению F -статистика равна среднему квадрату отклонений, обусловленных регрессией (MSR), деленному на дисперсию ошибки (MSE): F = MSR / MSE , где MSR = SSR / k , MSE = SSE /(n – k – 1), k – количество независимых переменных в регрессионной модели. Тестовая статистика F имеет F -распределение с k и n – k – 1 степенями свободы.

При заданном уровне значимости α решающее правило формулируется так: если F > F U , нулевая гипотеза отклоняется; в противном случае она не отклоняется. Результаты, оформленные в виде сводной таблицы дисперсионного анализа, приведены на рис. 20.

Рис. 20. Таблица дисперсионного анализа для проверки гипотезы о статистической значимости коэффициента регрессии

Аналогично t -критерию F -критерий выводится в таблицу при использовании Пакета анализа (опция Регрессия ). Полностью результаты работы Пакета анализа приведены на рис. 4, фрагмент, относящийся к F -статистике – на рис. 21.

Рис. 21. Результаты применения F -критерия, полученные с помощью Пакета анализа Excel

F-статистика равна 113,23, а р -значение близко к нулю (ячейка Значимость F ). Если уровень значимости α равен 0,05, определить критическое значение F -распределения с одной и 12 степенями свободы можно по формуле F U =F.ОБР(1-0,05;1;12) = 4,7472 (рис. 22). Поскольку F = 113,23 > F U = 4,7472, причем р -значение близко к 0 < 0,05, нулевая гипотеза Н 0 отклоняется, т.е. размер магазина тесно связан с его годовым объемом продаж.

Рис. 22. Проверка гипотезы о наклоне генеральной совокупности при уровне значимости, равном 0,05, с одной и 12 степенями свободы

Доверительный интервал, содержащий наклон β 1 . Для проверки гипотезы о существовании линейной зависимости между переменными можно построить доверительный интервал, содержащий наклон β 1 и убедиться, что гипотетическое значение β 1 = 0 принадлежит этому интервалу. Центром доверительного интервала, содержащего наклон β 1 , является выборочный наклон b 1 , а его границами - величины b 1 ± t n –2 S b 1

Как показано на рис. 18, b 1 = +1,670, n = 14, S b 1 = 0,157. t 12 =СТЬЮДЕНТ.ОБР(0,975;12) = 2,1788. Следовательно, b 1 ± t n –2 S b 1 = +1,670 ± 2,1788 * 0,157 = +1,670 ± 0,342, или + 1,328 ≤ β 1 ≤ +2,012. Таким образом, наклон генеральной совокупности с вероятностью 0,95 лежит в интервале от +1,328 до +2,012 (т.е. от 1 328 000 до 2 012 000 долл.). Поскольку эти величины больше нуля, между годовым объемом продаж и площадью магазина существует статистически значимая линейная зависимость. Если бы доверительный интервал содержал нуль, между переменными не было бы зависимости. Кроме того, доверительный интервал означает, что каждое увеличение площади магазина на 1 000 кв. футов приводит к увеличению среднего объема продаж на величину от 1 328 000 до 2 012 000 долларов.

Использование t -критерия для коэффициента корреляции. был введен коэффициент корреляции r , представляющий собой меру зависимости между двумя числовыми переменными. С его помощью можно установить, существует ли между двумя переменными статистически значимая связь. Обозначим коэффициент корреляции между генеральными совокупностями обеих переменных символом ρ. Нулевая и альтернативная гипотезы формулируются следующим образом: Н 0 : ρ = 0 (нет корреляции), Н 1 : ρ ≠ 0 (есть корреляция). Проверка существования корреляции:

где r = + , если b 1 > 0, r = – , если b 1 < 0. Тестовая статистика t имеет t -распределение с n – 2 степенями свободы.

В задаче о сети магазинов Sunflowers r 2 = 0,904, а b 1 - +1,670 (см. рис. 4). Поскольку b 1 > 0, коэффициент корреляции между объемом годовых продаж и размером магазина равен r = +√0,904 = +0,951. Проверим нулевую гипотезу, утверждающую, что между этими переменными нет корреляции, используя t -статистику:

При уровне значимости α = 0,05 нулевую гипотезу следует отклонить, поскольку t = 10,64 > 2,1788. Таким образом, можно утверждать, что между объемом годовых продаж и размером магазина существует статистически значимая связь.

При обсуждении выводов, касающихся наклона генеральной совокупности, доверительные интервалы и критерии для проверки гипотез являются взаимозаменяемыми инструментами. Однако вычисление доверительного интервала, содержащего коэффициент корреляции, оказывается более сложным делом, поскольку вид выборочного распределения статистики r зависит от истинного коэффициента корреляции.

Оценка математического ожидания и предсказание индивидуальных значений

В этом разделе рассматриваются методы оценки математического ожидания отклика Y и предсказания индивидуальных значений Y при заданных значениях переменной X .

Построение доверительного интервала. В примере 2 (см. выше раздел Метод наименьших квадратов ) регрессионное уравнение позволило предсказать значение переменной Y X . В задаче о выборе места для торговой точки средний годовой объем продаж в магазине площадью 4000 кв. футов был равен 7,644 млн. долл. Однако эта оценка математического ожидания генеральной совокупности является точечной. для оценки математического ожидания генеральной совокупности была предложена концепция доверительного интервала. Аналогично можно ввести понятие доверительного интервала для математического ожидания отклика при заданном значении переменной X :

где , = b 0 + b 1 X i – предсказанное значение переменное Y при X = X i , S YX – среднеквадратичная ошибка, n – объем выборки, X i - заданное значение переменной X , µ Y | X = X i – математическое ожидание переменной Y при Х = Х i , SSX =

Анализ формулы (13) показывает, что ширина доверительного интервала зависит от нескольких факторов. При заданном уровне значимости возрастание амплитуды колебаний вокруг линии регрессии, измеренное с помощью среднеквадратичной ошибки, приводит к увеличению ширины интервала. С другой стороны, как и следовало ожидать, увеличение объема выборки сопровождается сужением интервала. Кроме того, ширина интервала изменяется в зависимости от значений X i . Если значение переменной Y предсказывается для величин X , близких к среднему значению , доверительный интервал оказывается уже, чем при прогнозировании отклика для значений, далеких от среднего.

Допустим, что, выбирая место для магазина, мы хотим построить 95%-ный доверительный интервал для среднего годового объема продаж во всех магазинах, площадь которых равна 4000 кв. футов:

Следовательно, средний годовой объем продаж во всех магазинах, площадь которых равна 4 000 кв. футов, с 95% -ной вероятностью лежит в интервале от 6,971 до 8,317 млн. долл.

Вычисление доверительного интервала для предсказанного значения. Кроме доверительного интервала для математического ожидания отклика при заданном значении переменной X , часто необходимо знать доверительный интервал для предсказанного значения. Несмотря на то что формула для вычисления такого доверительного интервала очень похожа на формулу (13), этот интервал содержит предсказанное значение, а не оценку параметра. Интервал для предсказанного отклика Y X = Xi при конкретном значении переменной X i определяется по формуле:

Предположим, что, выбирая место для торговой точки, мы хотим построить 95%-ный доверительный интервал для предсказанного годового объема продаж в магазине, площадь которого равна 4000 кв. футов:

Следовательно, предсказанный годовой объем продаж в магазине, площадь которого равна 4000 кв. футов, с 95%-ной вероятностью лежит в интервале от 5,433 до 9,854 млн. долл. Как видим, доверительный интервал для предсказанного значения отклика намного шире, чем доверительный интервал для его математического ожидания. Это объясняется тем, что изменчивость при прогнозировании индивидуальных значений намного больше, чем при оценке математического ожидания.

Подводные камни и этические проблемы, связанные с применением регрессии

Трудности, связанные с регрессионным анализом:

  • Игнорирование условий применимости метода наименьших квадратов.
  • Ошибочная оценка условий применимости метода наименьших квадратов.
  • Неправильный выбор альтернативных методов при нарушении условий применимости метода наименьших квадратов.
  • Применение регрессионного анализа без глубоких знаний о предмете исследования.
  • Экстраполяция регрессии за пределы диапазона изменения объясняющей переменной.
  • Путаница между статистической и причинно-следственной зависимостями.

Широкое распространение электронных таблиц и программного обеспечения для статистических расчетов ликвидировало вычислительные проблемы, препятствовавшие применению регрессионного анализа. Однако это привело к тому, что регрессионный анализ стали применять пользователи, не обладающие достаточной квалификацией и знаниями. Откуда пользователям знать об альтернативных методах, если многие из них вообще не имеют ни малейшего понятия об условиях применимости метода наименьших квадратов и не умеют проверять их выполнение?

Исследователь не должен увлекаться перемалыванием чисел - вычислением сдвига, наклона и коэффициента смешанной корреляции. Ему нужны более глубокие знания. Проиллюстрируем это классическим примером, взятым из учебников. Анскомб показал, что все четыре набора данных, приведенных на рис. 23, имеют одни и те же параметры регрессии (рис. 24).

Рис. 23. Четыре набора искусственных данных

Рис. 24. Регрессионный анализ четырех искусственных наборов данных; выполнен с помощью Пакета анализа (кликните на рисунке, чтобы увеличить изображение)

Итак, с точки зрения регрессионного анализа все эти наборы данных совершенно идентичны. Если бы анализ был на этом закончен, мы потеряли бы много полезной информации. Об этом свидетельствуют диаграммы разброса (рис. 25) и графики остатков (рис. 26), построенные для этих наборов данных.

Рис. 25. Диаграммы разброса для четырех наборов данных

Диаграммы разброса и графики остатков свидетельствуют о том, что эти данные отличаются друг от друга. Единственный набор, распределенный вдоль прямой линии, - набор А. График остатков, вычисленных по набору А, не имеет никакой закономерности. Этого нельзя сказать о наборах Б, В и Г. График разброса, построенный по набору Б, демонстрирует ярко выраженную квадратичную модель. Этот вывод подтверждается графиком остатков, имеющим параболическую форму. Диаграмма разброса и график остатков показывают, что набор данных В содержит выброс. В этой ситуации необходимо исключить выброс из набора данных и повторить анализ. Метод, позволяющий обнаруживать и исключать выбросы из наблюдений, называется анализом влияния. После исключения выброса результат повторной оценки модели может оказаться совершенно иным. Диаграмма разброса, построенная по данным из набора Г, иллюстрирует необычную ситуацию, в которой эмпирическая модель значительно зависит от отдельного отклика (Х 8 = 19, Y 8 = 12,5). Такие регрессионные модели необходимо вычислять особенно тщательно. Итак, графики разброса и остатков являются крайне необходимым инструментом регрессионного анализа и должны быть его неотъемлемой частью. Без них регрессионный анализ не заслуживает доверия.

Рис. 26. Графики остатков для четырех наборов данных

Как избежать подводных камней при регрессионном анализе:

  • Анализ возможной взаимосвязи между переменными X и Y всегда начинайте с построения диаграммы разброса.
  • Прежде чем интерпретировать результаты регрессионного анализа, проверяйте условия его применимости.
  • Постройте график зависимости остатков от независимой переменной. Это позволит определить, насколько эмпирическая модель соответствует результатам наблюдения, и обнаружить нарушение постоянства дисперсии.
  • Для проверки предположения о нормальном распределении ошибок используйте гистограммы, диаграммы «ствол и листья», блочные диаграммы и графики нормального распределения.
  • Если условия применимости метода наименьших квадратов не выполняются, используйте альтернативные методы (например, модели квадратичной или множественной регрессии).
  • Если условия применимости метода наименьших квадратов выполняются, необходимо проверить гипотезу о статистической значимости коэффициентов регрессии и построить доверительные интервалы, содержащие математическое ожидание и предсказанное значение отклика.
  • Избегайте предсказывать значения зависимой переменной за пределами диапазона изменения независимой переменной.
  • Имейте в виду, что статистические зависимости не всегда являются причинно-следственными. Помните, что корреляция между переменными не означает наличия причинно-следственной зависимости между ними.

Резюме. Как показано на структурной схеме (рис. 27), в заметке описаны модель простой линейной регрессии, условия ее применимости и способы проверки этих условий. Рассмотрен t -критерий для проверки статистической значимости наклона регрессии. Для предсказания значений зависимой переменной использована регрессионная модель. Рассмотрен пример, связанный с выбором места для торговой точки, в котором исследуется зависимость годового объема продаж от площади магазина. Полученная информация позволяет точнее выбрать место для магазина и предсказать его годовой объем продаж. В следующих заметках будет продолжено обсуждение регрессионного анализа, а также рассмотрены модели множественной регрессии.

Рис. 27. Структурная схема заметки

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 792–872

Если зависимая переменная является категорийной, необходимо применять логистическую регрессию.

В статистическом моделировании регрессионный анализ представляет собой исследования, применяемые с целью оценки взаимосвязи между переменными. Этот математический метод включает в себя множество других методов для моделирования и анализа нескольких переменных, когда основное внимание уделяется взаимосвязи между зависимой переменной и одной или несколькими независимыми. Говоря более конкретно, регрессионный анализ помогает понять, как меняется типичное значение зависимой переменной, если одна из независимых переменных изменяется, в то время как другие независимые переменные остаются фиксированными.

Во всех случаях целевая оценка является функцией независимых переменных и называется функцией регрессии. В регрессионном анализе также представляет интерес характеристика изменения зависимой переменной как функции регрессии, которая может быть описана с помощью распределения вероятностей.

Задачи регрессионного анализа

Данный статистический метод исследования широко используется для прогнозирования, где его использование имеет существенное преимущество, но иногда это может приводить к иллюзии или ложным отношениям, поэтому рекомендуется аккуратно его использовать в указанном вопросе, поскольку, например, корреляция не означает причинно-следственной связи.

Разработано большое число методов для проведения регрессионного анализа, такие как линейная и обычная регрессии по методу наименьших квадратов, которые являются параметрическими. Их суть в том, что функция регрессии определяется в терминах конечного числа неизвестных параметров, которые оцениваются из данных. Непараметрическая регрессия позволяет ее функции лежать в определенном наборе функций, которые могут быть бесконечномерными.

Как статистический метод исследования, регрессионный анализ на практике зависит от формы процесса генерации данных и от того, как он относится к регрессионному подходу. Так как истинная форма процесса данных, генерирующих, как правило, неизвестное число, регрессионный анализ данных часто зависит в некоторой степени от предположений об этом процессе. Эти предположения иногда проверяемы, если имеется достаточное количество доступных данных. Регрессионные модели часто бывают полезны даже тогда, когда предположения умеренно нарушены, хотя они не могут работать с максимальной эффективностью.

В более узком смысле регрессия может относиться конкретно к оценке непрерывных переменных отклика, в отличие от дискретных переменных отклика, используемых в классификации. Случай непрерывной выходной переменной также называют метрической регрессией, чтобы отличить его от связанных с этим проблем.

История

Самая ранняя форма регрессии - это всем известный метод наименьших квадратов. Он был опубликован Лежандром в 1805 году и Гауссом в 1809. Лежандр и Гаусс применили метод к задаче определения из астрономических наблюдений орбиты тел вокруг Солнца (в основном кометы, но позже и вновь открытые малые планеты). Гаусс опубликовал дальнейшее развитие теории наименьших квадратов в 1821 году, включая вариант теоремы Гаусса-Маркова.

Термин «регресс» придумал Фрэнсис Гальтон в XIX веке, чтобы описать биологическое явление. Суть была в том, что рост потомков от роста предков, как правило, регрессирует вниз к нормальному среднему. Для Гальтона регрессия имела только этот биологический смысл, но позже его работа была продолжена Удни Йолей и Карлом Пирсоном и выведена к более общему статистическому контексту. В работе Йоля и Пирсона совместное распределение переменных отклика и пояснительных считается гауссовым. Это предположение было отвергнуто Фишером в работах 1922 и 1925 годов. Фишер предположил, что условное распределение переменной отклика является гауссовым, но совместное распределение не должны быть таковым. В связи с этим предположение Фишера ближе к формулировке Гаусса 1821 года. До 1970 года иногда уходило до 24 часов, чтобы получить результат регрессионного анализа.

Методы регрессионного анализа продолжают оставаться областью активных исследований. В последние десятилетия новые методы были разработаны для надежной регрессии; регрессии с участием коррелирующих откликов; методы регрессии, вмещающие различные типы недостающих данных; непараметрической регрессии; байесовские методов регрессии; регрессии, в которых переменные прогнозирующих измеряются с ошибкой; регрессии с большей частью предикторов, чем наблюдений, а также причинно-следственных умозаключений с регрессией.

Регрессионные модели

Модели регрессионного анализа включают следующие переменные:

  • Неизвестные параметры, обозначенные как бета, которые могут представлять собой скаляр или вектор.
  • Независимые переменные, X.
  • Зависимые переменные, Y.

В различных областях науки, где осуществляется применение регрессионного анализа, используются различные термины вместо зависимых и независимых переменных, но во всех случаях регрессионная модель относит Y к функции X и β.

Приближение обычно оформляется в виде E (Y | X) = F (X, β). Для проведения регрессионного анализа должен быть определен вид функции f. Реже она основана на знаниях о взаимосвязи между Y и X, которые не полагаются на данные. Если такое знание недоступно, то выбрана гибкая или удобная форма F.

Зависимая переменная Y

Предположим теперь, что вектор неизвестных параметров β имеет длину k. Для выполнения регрессионного анализа пользователь должен предоставить информацию о зависимой переменной Y:

  • Если наблюдаются точки N данных вида (Y, X), где N < k, большинство классических подходов к регрессионному анализу не могут быть выполнены, так как система уравнений, определяющих модель регрессии в качестве недоопределенной, не имеет достаточного количества данных, чтобы восстановить β.
  • Если наблюдаются ровно N = K, а функция F является линейной, то уравнение Y = F (X, β) можно решить точно, а не приблизительно. Это сводится к решению набора N-уравнений с N-неизвестными (элементы β), который имеет единственное решение до тех пор, пока X линейно независим. Если F является нелинейным, решение может не существовать, или может существовать много решений.
  • Наиболее распространенной является ситуация, где наблюдается N > точки к данным. В этом случае имеется достаточно информации в данных, чтобы оценить уникальное значение для β, которое наилучшим образом соответствует данным, и модель регрессии, когда применение к данным можно рассматривать как переопределенную систему в β.

В последнем случае регрессионный анализ предоставляет инструменты для:

  • Поиска решения для неизвестных параметров β, которые будут, например, минимизировать расстояние между измеренным и предсказанным значением Y.
  • При определенных статистических предположениях, регрессионный анализ использует избыток информации для предоставления статистической информации о неизвестных параметрах β и предсказанные значения зависимой переменной Y.

Необходимое количество независимых измерений

Рассмотрим модель регрессии, которая имеет три неизвестных параметра: β 0 , β 1 и β 2 . Предположим, что экспериментатор выполняет 10 измерений в одном и том же значении независимой переменной вектора X. В этом случае регрессионный анализ не дает уникальный набор значений. Лучшее, что можно сделать, оценить среднее значение и стандартное отклонение зависимой переменной Y. Аналогичным образом измеряя два различных значениях X, можно получить достаточно данных для регрессии с двумя неизвестными, но не для трех и более неизвестных.

Если измерения экспериментатора проводились при трех различных значениях независимой переменной вектора X, то регрессионный анализ обеспечит уникальный набор оценок для трех неизвестных параметров в β.

В случае общей линейной регрессии приведенное выше утверждение эквивалентно требованию, что матрица X Т X обратима.

Статистические допущения

Когда число измерений N больше, чем число неизвестных параметров k и погрешности измерений ε i , то, как правило, распространяется затем избыток информации, содержащейся в измерениях, и используется для статистических прогнозов относительно неизвестных параметров. Этот избыток информации называется степенью свободы регрессии.

Основополагающие допущения

Классические предположения для регрессионного анализа включают в себя:

  • Выборка является представителем прогнозирования логического вывода.
  • Ошибка является случайной величиной со средним значением нуля, который является условным на объясняющих переменных.
  • Независимые переменные измеряются без ошибок.
  • В качестве независимых переменных (предикторов) они линейно независимы, то есть не представляется возможным выразить любой предсказатель в виде линейной комбинации остальных.
  • Ошибки являются некоррелированными, то есть ковариационная матрица ошибок диагоналей и каждый ненулевой элемент являются дисперсией ошибки.
  • Дисперсия ошибки постоянна по наблюдениям (гомоскедастичности). Если нет, то можно использовать метод взвешенных наименьших квадратов или другие методы.

Эти достаточные условия для оценки наименьших квадратов обладают требуемыми свойствами, в частности эти предположения означают, что оценки параметров будут объективными, последовательными и эффективными, в особенности при их учете в классе линейных оценок. Важно отметить, что фактические данные редко удовлетворяют условиям. То есть метод используется, даже если предположения не верны. Вариация из предположений иногда может быть использована в качестве меры, показывающей, насколько эта модель является полезной. Многие из этих допущений могут быть смягчены в более продвинутых методах. Отчеты статистического анализа, как правило, включают в себя анализ тестов по данным выборки и методологии для полезности модели.

Кроме того, переменные в некоторых случаях ссылаются на значения, измеренные в точечных местах. Там могут быть пространственные тенденции и пространственные автокорреляции в переменных, нарушающие статистические предположения. Географическая взвешенная регрессия - единственный метод, который имеет дело с такими данными.

В линейной регрессии особенностью является то, что зависимая переменная, которой является Y i , представляет собой линейную комбинацию параметров. Например, в простой линейной регрессии для моделирования n-точек используется одна независимая переменная, x i , и два параметра, β 0 и β 1 .

При множественной линейной регрессии существует несколько независимых переменных или их функций.

При случайной выборке из популяции ее параметры позволяют получить образец модели линейной регрессии.

В данном аспекте популярнейшим является метод наименьших квадратов. С помощью него получают оценки параметров, которые минимизируют сумму квадратов остатков. Такого рода минимизация (что характерно именно линейной регрессии) этой функции приводит к набору нормальных уравнений и набору линейных уравнений с параметрами, которые решаются с получением оценок параметров.

При дальнейшем предположении, что ошибка популяции обычно распространяется, исследователь может использовать эти оценки стандартных ошибок для создания доверительных интервалов и проведения проверки гипотез о ее параметрах.

Нелинейный регрессионный анализ

Пример, когда функция не является линейной относительно параметров, указывает на то, что сумма квадратов должна быть сведена к минимуму с помощью итерационной процедуры. Это вносит много осложнений, которые определяют различия между линейными и нелинейными методами наименьших квадратов. Следовательно, и результаты регрессионного анализа при использовании нелинейного метода порой непредсказуемы.

Расчет мощности и объема выборки

Здесь, как правило, нет согласованных методов, касающихся числа наблюдений по сравнению с числом независимых переменных в модели. Первое правило было предложено Доброй и Хардином и выглядит как N = t^n, где N является размер выборки, n - число независимых переменных, а t есть числом наблюдений, необходимых для достижения желаемой точности, если модель имела только одну независимую переменную. Например, исследователь строит модель линейной регрессии с использованием набора данных, который содержит 1000 пациентов (N). Если исследователь решает, что необходимо пять наблюдений, чтобы точно определить прямую (м), то максимальное число независимых переменных, которые модель может поддерживать, равно 4.

Другие методы

Несмотря на то что параметры регрессионной модели, как правило, оцениваются с использованием метода наименьших квадратов, существуют и другие методы, которые используются гораздо реже. К примеру, это следующие методы:

  • Байесовские методы (например, байесовский метод линейной регрессии).
  • Процентная регрессия, использующаяся для ситуаций, когда снижение процентных ошибок считается более целесообразным.
  • Наименьшие абсолютные отклонения, что является более устойчивым в присутствии выбросов, приводящих к квантильной регрессии.
  • Непараметрическая регрессия, требующая большого количества наблюдений и вычислений.
  • Расстояние метрики обучения, которая изучается в поисках значимого расстояния метрики в заданном входном пространстве.

Программное обеспечение

Все основные статистические пакеты программного обеспечения выполняются с помощью наименьших квадратов регрессионного анализа. Простая линейная регрессия и множественный регрессионный анализ могут быть использованы в некоторых приложениях электронных таблиц, а также на некоторых калькуляторах. Хотя многие статистические пакеты программного обеспечения могут выполнять различные типы непараметрической и надежной регрессии, эти методы менее стандартизированы; различные программные пакеты реализуют различные методы. Специализированное регрессионное программное обеспечение было разработано для использования в таких областях как анализ обследования и нейровизуализации.