Гамма излучение энергия. Электромагнитные волны: что такое гамма-излучение и его вред

После открытия материалов, способных к самопроизвольному излучению элементарных частиц (радиоизлучению в результате распада), началось изучение их свойств. Активное участие в поиске новых и систематизации уже существующих знаний в физике принимали знаменитые супруги Кюри, а также Именно ему первому удалось открыть гамма-лучи. Поставленный им эксперимент был простым и, одновременно, гениальным.

В качестве источника излучения был взят радий. В толстостенной свинцовой емкости проделывалось узкое отверстие. На дне получившегося канала размещался радий. На небольшом удалении от емкости перпендикулярно оси отверстия был расположен фоточувствительный элемент - пластина. В промежутке между ней и емкостью с специальная установка могла генерировать магнитное поле высокой интенсивности, линии напряженности которого были ориентированы параллельно фоточувствительной пластине. Все элементы, кроме генератора поля, находились в безвоздушной среде, чтобы исключить воздействие атомов воздуха на результат эксперимента. Если бы Резерфорд проигнорировал этот момент, то гамма-лучи мог бы открыть кто-то другой.

При отсутствии магнитного воздействия на пластине возникало темное пятно, свидетельствующее о прямолинейном распространении излучения (все остальные направления попросту отсекались стенками свинцовой емкости). Но стоило появиться как на фоточувствительном элементе системы возникали сразу три пятна. Это означало, что некие частицы, излучаемые радием, отклоняются полем. Резерфорд предположил, что луч состоит как минимум из трех компонентов. Характер отклонения указывал на то, что частицы двух лучей обладают электрическим зарядом, а третий луч электронейтрален. Причем, отрицательная составляющая исходного излучения отклонялась гораздо выраженнее, чем положительная. Электронейтральная составляющая - это и есть гамма-лучи. Компонент с отрицательным зарядом получил название бета-лучей, а последний, положительный заряд - альфа-луч.

Кроме того, что они вели себя по-разному в магнитном поле, лучи обладали различными свойствами. Гамма-лучи способны проникать в материю на довольно большие расстояния. Так, свинцовая пластина толщиной в 1 см уменьшает их интенсивность всего в два раза. Альфа-луч может быть остановлен даже тонким листом бумаги. А вот бета-излучение занимает промежуточное положение: остановить поток можно металлом толщиной в несколько миллиметров.

Впоследствии выяснилось, что:

  • бета-луч представляет собой поток отрицательно заряженных частиц (электронов), перемещающихся с высокой скоростью;
  • альфа-луч - это ядра гелия, очень устойчивое образование;
  • гамма-луч - одна из разновидностей Спектр излучения полностью линейчатый, так как излучающее ядро характеризуется дискретными энергетическими состояниями. Представляют в виде уровней распределения энергии излученных квантов. Термин «гамма-излучение» все чаще применяется не только для описания процессов но и, вообще, для любого жесткого излучения электромагнитной природы в котором каждому кванту соответствует энергия не менее 10 кэВ. Источником данного вида излучения являются электроны в структуре возбужденных атомов. Излишек энергии переводит электроны на более высокие Оттуда они возвращаются к прежнему состоянию, выделяя излучение в виде рентгена или света (электромагнитные волны). Спектр электромагнитного излучения в случае гамма-лучей чрезвычайно мал и составляет не более 5*0,001 нм из-за чего отчетливее проявляются свойства частиц, а не волн.

Везде, где есть электрические разряды, встречается излучение того или иного спектра. Гамма-излучение – это один из видов электромагнитного излучения, которое отличается очень короткой длиной волны и состоит из потоков гамма-квантов (фотонов). Установлено, что это не самостоятельный вид радиоактивности, а сопровождение распадов альфа- и бета-излучений. Гамма-излучение может также возникнуть во время ядерной реакции, когда происходит торможение заряженных частиц, их распад и другие ядерные процессы.

Понятие о гамма-излучении

Радиоактивное излучение – это ионизирующее излучение, которое рождается при нестабильном поведении частиц различного спектра, когда те попросту распадаются на составные части атома – протоны, нейтроны, электроны и фотоны. Гамма-излучение, в том числе и рентгеновское, является тем же процессом. Радиация имеет различное биологическое действие на организм человека – его вред зависит от способности частиц проникать через различные препятствия.

В этом плане гамма-излучение обладает наиболее выраженной проницательной способностью, что позволяет ему проникать даже сквозь пятисантиметровую свинцовую стену. Поэтому гамма-излучение, или гамма-лучи – это радиоактивное излучение, обладающее высокой степенью радиоактивного влияния на живой организм. Во время излучения их скорость равна скорости света.

Частота гамма-излучения составляет > 3·10 18 , что является наиболее короткой волной и в классификации электромагнитных волн стоит в самом низу, сразу перед рентгеновским излучением, чье излучение немного длиннее и составляет 10 17 — 3·10 18

Альфа-, бета- и гамма-лучи крайне опасны для человека и их интенсивное воздействие ведет к лучевой болезни, которая проявляется характерными симптомами:

  • острый лейкоцитоз;
  • торможение пульса, снижение мышечного тонуса, замедление всех процессов жизнедеятельности;
  • выпадение волос;
  • поочередный отказ всех органов – сначала печени, почек, спинного мозга, а затем сердца.

Попадая в организм, лучи радиации уничтожают и подвергают мутации клетки таким образом, что, заразившись, те заражают другие. А те, что смогли выжить, перерождаются уже неспособными к делению и другим функциям жизнедеятельности. Альфа- и бета-лучи являются наиболее опасными, однако гамма-частица коварна тем, что за 1 секунду преодолевает расстояние в 300 000 километров и способна поражать значительные расстояния. При небольшой дозе радиации человек не чувствует ее воздействие, и свое разрушительное влияние она обнаруживает не сразу. Может пройти как несколько лет, так и несколько поколений – в зависимости от дозы и типа лучей – прежде чем проявятся нарушения. Однако при большой дозе облучения болезнь проявляется в течение нескольких часов и имеет ярковыраженную симптоматику с болями в животе, неудержимой рвотой, головными болями.

Истории наших читателей

Владимир
61 год

Опасность гамма-излучения

Гамма-лучи могут проникать из космоса, источники гамма-излучения могут быть также распадом некоторых радиоактивных пород – урана, гранита, радона и других.

Наиболее известный случай отравления гамма-лучами – это случай отравления Александра Литвиненко , которому подсыпали в чай полоний. Полоний – радиоактивный элемент, производный урана, который обладает высокой радиоактивностью.

Квантовая энергия гамма-излучения обладает огромной силой, которая увеличивает их проницаемость в живые клетки и разрушительное действие. Вызывая смерть и трансформацию клеток, гамма-кванты со временем накапливаются в организме, а поврежденные клетки одновременно с этим отравляют организм своими токсинами, которые появляются в процессе их разложения.

Гамма-квант – это ядерное излучение, частица без массы и заряда, которая испускается при ядерной реакции, когда ядро переходит из одного энергетического состояния в другое. Когда квант гамма-изучения проходит через определенное вещество и вступает с ним во взаимодействие, то происходит полное поглощение энергии гамма-кванта этому веществу с выбросом его электрона.

Опасность такого облучения наиболее губительна для человека, так как его проникающая способность практически не оставляет шансов – 5-сантиметровая свинцовая стена способна поглотить лишь половину гамма-излучения. В этом отношении альфа- и бета-лучи менее опасны – альфа-излучение может задержать обычный лист бумаги, бета-излучению не преодолеть деревянной стены, а от гамма-излучения практически не существует преграды. Поэтому крайне важно, чтобы не происходило длительного воздействия этих лучей на организм человека.

Как защититься от гамма-излучения

Попадая в организм при повышенном гамма-фоне, радиация начинает незаметно отравлять организм, и если не произошло потребление сверхвысоких доз за короткое время, то первые признаки могут проявиться нескоро. В первую очередь страдает система кроветворения, которая берет первый удар на себя . В ней резко сокращается количество лейкоцитов, вследствие чего очень быстро поражается и выходит из строя спинной мозг. Вместе со спинным мозгом страдают лимфатические узлы, которые в дальнейшем также выходят из строя. Человек теряет волосы, его ДНК повреждается. Наступает мутация генома, что ведет к нарушениям в наследственности. При сильных поражениях наступает смерть от рака или от выхода из строя одного или нескольких органов.

Необходимо измерять гамма-фон на земельных участках перед покупкой. Под действием некоторых подземных пород, в том числе в подземных реках, при тектонических процессах земной коры вполне возможно заражение гамма-излучением поверхности земли.

Защита от гамма-излучения может быть лишь частичной. Если допустить подобную катастрофу, то ближайшие 300 лет пораженная территория будет полностью отравлена, вплоть до нескольких десятков метров слоя почвы. Полной защиты не существует, однако можно воспользоваться подвалами жилых домов, подземными окопами и прочими убежищами, хотя следует помнить, что этот вид защиты действует лишь частично.

Таким образом, способы защиты от гамма-излучения заключаются главным образом в измерении гамма-фона специальным оборудованием и непосещение мест с повышенным уровнем радиации – например, Чернобыля или окрестностей Фукусимы.

Самый большой выброс в воду ядерной радиации в истории человечества произошел в 2011 году на Фукусиме, когда волна цунами привела к выходу из строя трех ядерных реакторов. Радиоактивные отходы смываются в море в количестве 300 тонн ежедневно вот уже седьмой год. Размеры этой катастрофы ужасают. Так как эту утечку невозможно устранить по причине высокой температуры в зоне поражения, неизвестно, сколько еще будет происходить этот процесс. А тем временем подводным течением радиация распространилась уже на значительную часть Тихого океана.

Область применения гамма-излучения

Если целенаправленно применять поток гамма-частиц, то можно выборочно уничтожать те клетки организма, которые в данный момент времени имеют активное размножение . Этот эффект от применения гамма-лучей используется в медицине при борьбе с онкологией. Как последнюю меру и только когда другие средства перестают работать, целенаправленно на злокачественную опухоль применяют метод облучения. Наиболее эффективно использование дистанционной гамма-лучевой терапии. Такой способ разработан для лучшего управления процессом с минимизацией рисков и повреждений здоровых тканей.

Гамма-кванты также используют в других сферах:

  1. С помощью этих лучей изменяют энергию. Прибор для этого, который используется в экспериментальной физике, называется гамма-спектрометром. Он бывает магнитным, сцинтилляционным, полупроводниковым и кристалл-дифракционным.
  2. Изучение спектра ядерного гамма-излучения дает информацию о ядерной структуре. Внешняя среда, влияя на гамма-излучение, производит различные эффекты, которые имеют большое значение для понимания процессов, происходящих при этом. Поэтому все эти процессы активно изучаются.
  3. Техника также применяет гамма-излучения, чтобы обнаружить дефекты металлов. Так как гамма-излучение обладает различного уровня поглощением в разной среде, но при одинаковом расстоянии распространения, то можно вычислить дефекты с помощью различного по интенсивности излучения.
  4. Радиационная химия также использует это излучение для возбуждения химического превращения в различных процессах с помощью естественных или искусственных радиоактивных изотопов и электронных ускорителей – источников этого рода радиации.
  5. Стерилизацию пищевых продуктов с помощью гамма-излучений использует в своих целях пищевая промышленность .
  6. В растениеводстве используются гамма-кванты для того, чтобы растение приобрело лучшие показатели путем мутации.
  7. С помощью гамма-лучей выращивают и обрабатывают некоторые микроорганизмы, делают лекарства, в том числе некоторые антибиотики. Ими обрабатывают семена, чтобы избавить их от мелких вредителей.

Еще около 100 лет назад свойства гамма-излучения не были достаточно изучены, и это приводило к незащищенному использованию радиоактивных элементов в качестве медицинского или измерительного оборудования. Гамма-излучение также использовали для покрытий различных ювелирных и керамических изделий, при изготовлении витражного стекла. Поэтому следует быть осторожным в хранении и приобретении предметов старины – безобидная с виду вещь может таить в себе радиоактивную угрозу.

– это электромагнитное излучение с очень короткой длиной волны, менее 0,1 нм (1 А), испускаемое возбужденными атомными ядрами при радиоактивных превращениях и ядерных реакциях (взрывах), а также возникающее при торможении заряженных частиц в веществе, их распаде, при аннигиляции пар «частица-античастица», при прохождении быстрых заряженных частиц через вещество, в лазерных пучках света, в межзвездном пространстве.

Основными источниками Г.и. служат естественные и искусственные радиоактивные изотопы радия, кобальта, цезия и др. химических элементов. Гамма-лучи (γ-лучи) принято рассматривать как поток частиц - γ-квантов, а не электромагнитных волн, т.к. волновые свойства заметно проявляются лишь у самых длинноволновых гамма-лучей, корпускулярные же их свойства выражены достаточно отчетливо. Г.и. не отклоняется в магнитном поле и, следовательно, не имеет электрического заряда. Оно идентифицировано как жесткое (т.е. имеющее очень высокую энергию) электромагнитное излучение. Г.и. испускается при переходах ядра из более возбужденного энергетического состояния в менее возбужденное или основное.

Энергия γ-кванта равна разнице энергий состояний, между которыми происходит переход. Испускание ядром γ-кванта не влечет за собой изменения атомного номера или массового числа, в отличие от др. радиоактивных излучений (α-, β-распадов). Г.и. обладает большей проникающей способностью, чем альфа и бета-излучение, т.е. может проходить через большие толщины вещества без заметного ослабления. Основные процессы, происходящие при взаимодействии Г.и. с веществом - фотоэлектрическое поглощение (фотоэффект), комптоновское рассеяние (Комптон-эффект) и образование пар «электрон-позитрон». Действие Г.и. на организм аналогично действию др. ионизирующих излучений, вызывает в зависимости от дозы лучевое поражение вплоть до гибели. Характер воздействия Г.и. зависит от энергии γ-квантов и пространственных особенностей излучения (внутреннее, внешнее). Повреждения организма радиоактивными излучениями могут носить наследственный характер. Воздействие Г.и. на растения, животных и микроорганизмы может вызывать образование мутаций. Относительная биологическая эффективность Г.и. составляет 0,7-0,9 от эффективности жесткого рентгеновского излучения, принятого равной 1. Предупреждение опасного воздействия Г.и. достигается снижением риска аварий на радиационноопасном объекте с выбросом радиоактивных веществ, построением защитных систем от ионизирующих излучений естественного и искусственного происхождения, регламентацией интенсивности и доз облучения, проведением реабилитационно-восстановительных процедур. Ликвидация последствий аварий и катастроф с источниками ионизирующих излучений (в т.ч. Г.и.) - одна из самых сложных задач специальных и общих служб ликвидации чрезвычайных ситуаций.

Гамма-излучением называется одна из коротковолновых разновидностей электромагнитных излучений. Из-за крайне малой длины волны излучения гамма диапазона обладают выраженными корпускулярными свойствами, при этом волновые свойства практически отсутствуют.

Гамма обладает мощнейшим травмирующим действием на живые организмы, и при этом его совершенно невозможно распознать органами чувств.

Оно относится к группе ионизирующих излучений, то есть способствует превращению устойчивых атомов различных веществ в ионы с положительным или отрицательным зарядом. Скорость гамма-излучения сопоставима со скоростью света. Открытие ранее неизвестных радиационных потоков было сделано в 1900 году французским учёным Вилларом.

Для названий были использованы буквы греческого алфавита. Излучение, находящееся на шкале электромагнитных излучений после рентгеновского, получило название гаммы - третьей буквы алфавита.

Следует понимать, что границы между различными видами радиации, весьма условны.

Попробуем, избегая специфической терминологии, разобраться, что такое гамма ионизирующее излучение. Любое вещество состоит из атомов, которые в свою очередь включают в себя ядро и электроны. Атом, а тем более его ядро отличаются высокой устойчивостью, поэтому для их расщепления нужны особые условия.

Если эти условия каким-то образом возникают или получены искусственно, происходит процесс ядерного распада, который сопровождается выделением большого количества энергии и элементарных частиц.

В зависимости от того, что именно выделяется в этом процессе, излучения делятся на несколько видов. Альфа, бета и нейтронное излучение отличаются выделением элементарных частиц, а рентгеновские и гамма активный луч - это поток энергии.

Хотя, на самом деле, любое излучение, в том числе и излучение в гамма-диапазоне, подобно потоку частиц. В случае этого излучения частицами потока являются фотоны или кварки.

По законам квантовой физики, чем меньше длина волны, тем более высокой энергией обладают кванты излучения.

Так как длина волны гамма лучей очень мала, то можно утверждать, что энергия гамма излучения чрезвычайно велика.

Возникновение гамма-излучения

Источниками излучения в гамма-диапазоне являются различные процессы. Во вселенной существуют объекты, в которых происходят реакции. Результатом этих реакций является космическое гамма-излучение.

Основные источники гамма-лучей - это квазары и пульсары. Ядерные реакции с массивным выделением энергии и гамма-излучения также происходят в процессе преобразования звезды в сверхновую.

Гамма электромагнитное излучение возникает при различных переходах в области атомной электронной оболочки, а также при распаде ядер некоторых элементов. Среди источников гамма-лучей можно также назвать определённую среду с сильным магнитным полем, где элементарные частицы тормозятся сопротивлением этой среды.

Опасность гамма-лучей

В силу своих свойств радиация гамма-спектра обладает очень высокой проникающей способностью. Чтобы её задержать, нужна свинцовая стена толщиной не менее пяти сантиметров.

Кожные покровы и прочие защитные механизмы живого существа не являются препятствием гамма-излучению. Оно проникает прямо в клетки, оказывая разрушительное воздействие на все структуры. Облучённые молекулы и атомы вещества сами становятся источником излучения и провоцируют ионизацию других частиц.

В результате этого процесса из одних веществ получаются другие. Из них составляются новые клетки с другим геномом. Ненужные при строительстве новых клеток остатки старых структур становятся токсинами для организма.

Наибольшая опасность радиационных лучей для живых организмов, получивших дозу радиации, в том, что они не способны ощущать наличие в пространстве этой смертельной волны. А также в том, что у живых клеток нет никакой специфической защиты от разрушительной энергии, которую несёт гамма ионизирующее излучение. Наибольшее влияние этот вид радиации оказывает на состояние половых клеток, несущих молекулы ДНК.

Разные клетки организма по-разному ведут себя в гамма-лучах, и обладают разной степенью устойчивости к воздействию этого вида энергии. Однако ещё одним свойством гамма-излучения является кумулятивная способность.

Однократное облучение небольшой дозой не наносит непоправимого разрушительного воздействия на живую клетку. Именно поэтому радиационным излучениям нашлось применение в науке, медицине, промышленности и других областях человеческой деятельности.

Области применения гамма-лучей

Даже смертоносным лучам пытливые умы учёных нашли сферы применения. В настоящее время гамма-излучение используется в различных отраслях промышленности, идут на благо науки, а также успешно применяются в различных медицинских приборах.

Способность изменять структуру атомов и молекул оказалась на благо при лечении тяжёлых заболеваний, разрушающих организм на клеточном уровне.

Для лечения онкологических новообразований гамма-лучи незаменимы, так как способны разрушить аномальные клетки, и прекратить их стремительное деление. Иногда остановить аномальный рост раковых клеток невозможно ничем, тогда на помощь приходит гамма-излучение, где клетки уничтожаются полностью.

Применяется гамма ионизирующее излучение для уничтожения патогенной микрофлоры и различных потенциально опасных загрязнений. В радиоактивных лучах стерилизуют медицинские инструменты и приборы. Также данный вид радиации применяется для обеззараживания некоторых продуктов.

Гамма-лучами просвечивают различные цельнометаллические изделия для космической и других отраслей промышленности с целью обнаружения скрытых дефектов. В тех областях производства, где необходим предельный контроль за качеством изделий, этот вид проверки просто незаменим.

При помощи гамма-лучей учёные измеряют глубину бурения, получают данные о возможности залегания различных пород. Гамма-лучи могут быть использованы и в селекции. Строго дозированным потоком облучаются определённые отобранные растения, чтобы получить нужные мутации в их геноме. Таким способом селекционеры получают новые породы растений с нужными им свойствами.

С помощью гамма-потока определяются скорости космических аппаратов и искусственных спутников. Посылая лучи в космическое пространство, учёные могут определить расстояние и смоделировать путь космического аппарата.

Способы защиты

Земля обладает естественным механизмом защиты от космической радиации, это озоновый слой и верхние слои атмосферы.

Те лучи, которые, обладая огромными скоростями, проникают в защищённое пространство земли, не причиняют большого вреда живым существам. Наибольшую опасность представляют источники и гамма-радиация, полученная в земных условиях.

Самым главным источником опасности радиационного заражения остаются предприятия, где под контролем человека осуществляется контролируемая ядерная реакция. Это атомные электростанции, где производится энергия для обеспечения населения и промышленности светом и теплом.

Для обеспечения работников этих объектов принимаются самые серьёзные меры. Трагедии, произошедшие в разных точках мира, из-за утраты человеком контроля за ядерной реакцией, научили людей быть осторожными с невидимым врагом.

Защита работников электростанций

На предприятиях ядерной энергетики и производствах, связанных с использованием гамма-излучения, строго ограничивается время контакта с источником радиационной опасности.

Все сотрудники, имеющие служебную необходимость контактировать или находиться вблизи источника гамма-излучения, используют специальные защитные костюмы и проходят несколько ступеней очистки перед тем, как вернуться в «чистую» зону.

Для эффективной защиты от гамма-лучей используются материалы, обладающие высокой прочностью. К ним относятся свинец, высокопрочный бетон, свинцовое стекло, определённые виды стали. Эти материалы применяются в сооружении защитных контуров электростанций.

Элементы из этих материалов используются при создании противорадиационных костюмов для сотрудников электростанций, имеющих допуск к источникам радиации.

В так называемой «горячей» зоне свинец нагрузки не выдерживает, так как его температура плавления недостаточно высока. В области, где протекает термоядерная реакция с выделением высоких температур, используются дорогие редкоземельные металлы, например вольфрам и тантал.

Все люди, имеющие дело с гамма-излучением, обеспечиваются индивидуальными измерительными приборами.

Ввиду отсутствия естественной чувствительности к радиации, человек может воспользоваться дозиметром, чтобы определить, какую дозу радиации он получил за определённый период.

Нормальной считается доза, не превышающая 18-20 микрорентген в час. Ничего особенно страшного не произойдёт при облучении дозой до 100 микрорентген. Если человек получил такую дозу, могут проявиться последствия через две недели.

При получении дозы в 600 рентген человеку грозит смерть в 95% случаев в течение двух недель. Доза в 700 рентген смертельна в 100% случаев.

Из всех видов радиации именно гамма-лучи несут наибольшую опасность для человека. К сожалению, вероятность радиационного заражения существует для каждого. Даже находясь вдали от промышленных предприятий, производящих энергию посредством расщепления атомного ядра, можно подвергнуться опасности облучения.

История знает примеры таких трагедий.

Сдавался в русской школе на Кипре (оценка 5-)

Гамма-излучение.

Гамма-излучение – это коротковолновое электромагнитное излучение. На шкале электромагнитных волн оно граничит с жестким рентгеновским излучением, занимая область более высоких частот. Гамма-излучение обладает чрезвычайно малой длинной волны (λ10 -8 см) и вследствие этого ярко выраженными корпускулярными свойствами, т.е. ведет себя подобно потоку частиц – гамма квантов, или фотонов, с энергией h ν (ν – частота излучения, h – Планка постоянная).

Гамма- излучение возникает при распадах радиоактивных ядер, элементарных частиц, при аннигиляции пар частицы-античастица, а также при прохождении быстрых заряженных частиц через вещество.

Гамма-излучение, сопровождающее распад радиоактивных ядер, испускается при переходах ядра из более возбужденного энергетического состояния в менее возбужденное или в основное. Энергия γ – кванта равна разности энергий Δε состояний, между которыми происходит переход.

Возбужденное состояние

Основное состояние ядра Е1

Испускание ядром γ-кванта не влечет за собой изменения атомного номера или массового числа, в отличие от других видов радиоактивных превращений. Ширина линий гамма-излучений чрезвычайно мала (~10 -2 эв). Поскольку расстояние между уровнями во много раз больше ширины линий, спектр гамма-излучения является линейчатым, т.е. состоит из ряда дискретных линий. Изучение спектров гамма-излучения позволяет установить энергии возбужденных состояний ядер. Гамма-кванты с большими энергиями испускаются при распадах некоторых элементарных частиц. Так, при распаде покоящегося π 0 - мезона возникает гамма-излучение с энергией ~70Мэв. Гамма-излучение от распада элементарных частиц также образует линейчатый спектр. Однако испытывающие распад элементарные частицы часто движутся со скоростями, сравнимыми с скоростью света. Вследствие этого возникает доплеровское уширение линии и спектр гамма-излучения оказывается размытым в широком интервале энергий. Гамма-излучение, образующееся при прохождении быстрых заряженных частиц через вещество, вызывается их торможением к кулоновском поле атомных ядер вещества. Тормозное гамма –излучение, также как и тормозное рентгеноовское излучение, характерезуется сплошным спектром, верхняя граница которого совпадает с энергией заряженной частицы, например электрона. В ускорителях заряженных частиц получают тормозное гамма- излучение с максимальной энергией до нескольких десятков Гэв.

В межзвёзном пространстве гамма-излучение может возникать в результате соударений квантов более мягкого длинноволнового, электромагнитного излучения, например света, с электронами, ускоренными магнитными полями космических объектов. При этом быстрый электрон передает свою энергию электромагнитному излучению и видимый свет превращается в более жесткое гамма-излучение.

Аналогичное явление может иметь место в земных условиях при столновении электронов большой энергии, получаемых на ускорителях, с фотонами видимого света в интенсивных пучках света, создаваемых лазерами. Электрон передает энергию световому фотону, который превращается в γ-квант. Таким образом, можно на практике превращать отдельные фотоны света в кванты гамма-излучения высокой энергии.

Гамма-излучение обладает большой проникающей способностью, т.е. может проникать сквозь большие толщи вещества без заметного ослабления. Основные процессы, происходящие при взаимодействии гамма-излучения с веществом, - фотоэлектрическое поглощение (фотоэффект), комптоновское рассеяние (комптон-эффект) и образавание пар электрон-позитрон. При фотоэффекте происходит поглощение γ-кванта одним из электронов атома, причём энергия γ-кванта преобразуется (за вычетом энергии связи электрона в атоме) в кинетическую энергию электрона, вылетающего за пределы атома. Вероятность фотоэффекта прямо пропорциональна пятой степени атомного номера элемента и обратно пропорциональна 3-й степени энергии гамма-излучения. Таким образом, фотоэффект преобладает в области малых энергии γ-квантов (100 кэв) на тяжелых элементах (Pb, U).

При комптон-эффекте происходит рассеяние γ-кванта на одном из электронов, слабо связанных в атоме. В отличие от фотоэффекта, при комптон-эффекте γ-квант не исчезает, а лишь изменяет энергию (длинну волны) и направление распрастранения. Узкий пучок гамма-лучей в результате комптон-эффекта становится более широким, а само излучение - более мягким (длинноволновым). Интенсивность комптоновского рассеяния пропорциональна числу электронов в 1см 3 вещества, и поэтому вероятность этого процесса пропорциональна атомному номеру вещества. Комптон-эффект становится заметным в веществах с малым атомным номером и при энергиях гамма-излучения, превышвют энергию связи электронов в атомах. Так, в случае Pb вероятность комптоновского рассеяния сравнима с вероятностью фотоэлектрического поглощения при энергии ~ 0,5 Мэв. В случае Al комптон-эффект преобладает при гораздо меньших энергиях.

Если жнергия γ-кванта превышает 1,02 Мэв, становится возможным процесс образования электрон-позитроновых пар в электрическом поле ядер. Вероятность образования пар пропорциональна квадрату атомного номера и увеличивается с ростом hν. Поэтому при hν ~10 Мэв основным процессом в любом веществе оказывается образование пар.

50

0,1 0,5 1 2 5 10 50

Энергия γ-лучей (Мэв)

Обратный процесс аннигиляция электрон-позитронной пары является источником гамма-излучения.

Для характеристики ослабления гамма-излучения в веществе обычно пользуются коэффициентом поглощения, который показывает, на какой толщине Х поглотителя интенсивность I 0 падающего пучка гамма-излучение ослабляется в е раз:

I=I 0 e - μ 0 x

Здесь μ 0 – линейный коэффициент поглощения гамма-излучения. Иногда вводят массовый коэффициент поглощения, равный отношению μ 0 к плотности поглотителя.

Экспоненциальный закон ослабления гамма-излучения справедлив для узкого направления пучка гамма-лучей, когда любой процесс, как поглощения, так и рассеяния, выводит гамма-излучение из состава первичного пучка. Однако при высоких энергиях процесс прохождения гамма-излучения через вещество значительно усложняется. Вторичные электроны и позитроны обладают большой энергией и поэтому могут, в свою очередь, создавать гамма-излучение благодаря процессам торможения и аннигиляциии. Таким образом в веществе возникает ряд чередующихся поколений вторичного гамма-излучения, электронов и позитронов, то есть происходит развитие каскадного ливня. Число вторичных частиц в таком ливне сначала возрастает с толщиной, достигая максимума. Однако затем процессы поглощения начинают преобладать над процессами размножения частиц и ливень затухает. Способность гамма-излучения развивать ливни зависит от соотношения между его энергией и так называемой критической энергией, после которой ливень в данном веществе практически теряет способность развиваться.

Для изменения энергии гамма-излучения в эксперементальной физике применяются гамма-спектрометры различных типов, основанные большей частью на измерении энергии вторичных электронов. Основные типы спектрометров гамма-излучения: магнитные, сцинтиляционные, полупроводниковые, кристал-дифракционные.

Изучение спектров ядерных гамма-излучений дает важную информацию о структуре ядер. Наблюдение эффектов, связанных с влиянием внешней среды на свойства ядерного гамма-излучения, используется для изучения свойств твёрдых тел.

Гамма-излучение находит применение в технике, например для обнаружения дефектов в металлических деталях – гамма-дефектоскопия. В радиационной химии гамма-излучение применяется для инициирования химических превращений, например процессов полимеризации. Гамма-излучение используется в пищевой промышленности для стерилизации продуктов питания. Основными источниками гамма-излучения служат естественные и искусственные радиоактивные изотопы, а также электронные ускорители.

Действие на организм гамма-излучения подобно действию других видов ионизирующих излучений. Гамма-излучение может вызывать лучевое поражение организма, вплоть до его гибели. Характер влияния гамма-излучения зависит от энергии γ-квантов и пространственных особенностей облучения, например, внешнее или внутреннее. Относительная биологическая эффективность гамма-излучения составляет 0,7-0,9. В производственных условиях (хроническое воздействие в малых дозах) относительная биологическая эффективность гамма-излучения принята равной 1. Гамма-излучение используется в медицине для лечения опухолей, для стерилизации помещений, аппаратуры и лекарственных препаратов. Гамма-излучение применяют также для получения мутаций с последующим отбором хозяйственно-полезных форм. Так выводят высокопродуктивные сорта микроорганизмов (например, для получения антибиотиков) и растений.

Современные возможности лучевой теропии расширились в первую очередь за счёт средств и методов дистанционной гамма-теропии. Успехи дистанционной гамма-теропии достигнуты в результате большой работы в области использования мощных искусственных радиоактивных источников гамма-излучения (кобальт-60, цезий-137), а также новых гамма-препаратов.

Большое значение дистанционной гамма-теропии объясняется также сравнительной доступностью и удобствами использования гамма-аппаратов. Последние, так же как и рентгеновские, конструируют для статического и подвижного облучения. С помощью подвижного облучения стремятся создать большую дозу в опухоли при рассредоточенном облучении здоровых тканей. Осуществлены конструктивные усовершенствования гамма-аппаратов, направленные на уменьшение полутени, улучшение гомогенизации полей, использование фильтров жалюзи и поиски дополнительных возможностей защиты.

Использование ядерных излучений в растениеводстве открыло новые, широкие возможности для изменения обмена веществ у сельскохозяйственных растений, повышение их урожайности, ускорения развития и улучшения качества.

В результате первых исследований радиобиологов было установлено, что ионизирующая радиация – мощный фактор воздействия на рост, развитие и обмен веществ живых организмов. Под влиянием гамма-облучения у растений, животных или микроорганизмов меняется слаженный обмен веществ, ускоряется или замедляется (в зависимости от дозы) течение физиологических процессов, наблюдаются сдвиги в росте, развитии, формировании урожая.

Следует особо отметить, что при гамма-облучении в семена не попадают радиоактивные вещества. Облученные семена, как и выращенный из них урожай, нерадиоактивны. Оптимальные дозы облучения только ускоряют нормальные процессы, происходящие в растении, и поэтому совершенно необоснованны какие-либо опасения и предостережения против использования в пищу урожая, полученного из семян, подвергавшихся предпосевному облучению.

Ионизирующие излучения стали использовать для повышения сроков хранения сельскохозяйственных продуктов и для уничтожения различных насекомых-вредителей. Например, если зерно перед загрузкой в элеватор пропустить через бункер, где установлен мощный источник радиации, то возможность размножения насекомых-вредителей будет исключена и зерно сможет храниться длительное время без каких-либо потерь. Само зерно как питательный продукт не меняется при таких дозах облучения. Употребление его для корма четырех поколений экспериментальных животных не вызвало каких бы то ни было отклонений в росте, способности к размножению и других патологических отклонений от нормы.