Пищевая цепь из 3 звеньев. ЛР4

Каждый организм должен получать энергию для жизни. Например, растения потребляют энергию солнца, животные питаются растениями, а некоторые животные питаются другими животными.

Пищевая (трофическая) цепь - это последовательность того, кто кого ест в биологическом сообществе () для получения питательных веществ и энергии, поддерживающих жизнедеятельность.

Автотрофы (продуценты)

Автотрофы - живые организмы, которые производят свою пищу, то есть собственные органические соединения, из простых молекул, таких как углекислый газ. Существует два основных типа автотрофов:

  • Фотоавтотрофы (фотосинтезирующие организмы) такие, как растения, перерабатывают энергию солнечного света для получения органических соединений - сахаров - из углекислого газа в процессе . Другими примерами фотоавтотрофов являются водоросли и цианобактерии.
  • Хемоавтотрофы получают органические вещества благодаря химическим реакциям, в которых задействованы неорганические соединения (водород, сероводород, аммиак и т.д.). Этот процесс называется хемосинтезом.

Автотрофы являются основой каждой экосистемы на планете. Они составляют большинство пищевых цепей и сетей, а энергия, получаемая в процессе фотосинтеза или хемосинтеза, поддерживает все остальные организмы экологических систем. Когда речь идет об их роли в пищевых цепях, автотрофы можно назвать продуцентами или производителями.

Гетеротрофы (консументы)

Гетеротрофы , также известные как потребители, не могут использовать солнечную или химическую энергию, для производства собственной пищи из углекислого газа. Вместо этого, гетеротрофы получают энергию, потребляя другие организмы или их побочные продукты. Люди, животные, грибы и многие бактерии - гетеротрофы. Их роль в пищевых цепях заключается в потреблении других живых организмов. Существует множество видов гетеротрофов с разными экологическими ролями: от насекомых и растений до хищников и грибов.

Деструкторы (редуценты)

Следует упомянуть еще одну группу потребителей, хотя она не всегда фигурирует в схемах пищевых цепей. Эта группа состоит из редуцентов, организмов, которые перерабатываю мертвые органические вещества и отходы, превращаяя их в неорганические соединения.

Редуценты иногда считаются отдельным трофическим уровнем. Как группа, они питаются отмершими организмами, поступающими на различных трофических уровнях. (Например, они способны перерабатывать разлагающееся растительное вещество, тело недоеденной хищниками белки или останки умершего орла.) В определенном смысле, трофический уровень редуцентов проходит параллельно стандартной иерархии первичных, вторичных и третичных потребителей. Грибы и бактерии являются ключевыми редуцентами во многих экосистемах.

Редуценты, как часть пищевой цепи, играют важную роль в поддержании здоровой экосистемы, поскольку благодаря им, в почву возвращаются питательные вещества и влага, которые в дальнейшем используется продуцентами.

Уровни пищевой (трофической) цепи

Схема уровней пищевой (трофической) цепи

Пищевая цепь представляет собой линейную последовательность организмов, которые передают питательные вещества и энергию начиная с продуцентов и к высшим хищникам.

Трофический уровень организма - это положение, которое он занимает в пищевой цепи.

Первый трофический уровень

Пищевая цепь начинается с автотрофного организма или продуцента , производящего собственную пищу из первичного источника энергии, как правило, солнечной или энергии гидротермальных источников срединно-океанических хребтов. Например, фотосинтезирующие растения, хемосинтезирующие и .

Второй трофический уровень

Далее следуют организмы, которые питаются автотрофами. Эти организмы называются растительноядными животными или первичными потребителями и потребляют зеленые растения. Примеры включают насекомых, зайцев, овец, гусениц и даже коров.

Третий трофический уровень

Следующим звеном в пищевой цепи являются животные, которые едят травоядных животных - их называют вторичными потребителями или плотоядными (хищными) животными (например, змея, которая питается зайцами или грызунами).

Четвертый трофический уровень

В свою очередь, этих животных едят более крупные хищники - третичные потребители (к примеру, сова ест змей).

Пятый трофический уровень

Третичных потребителей едят четвертичные потребители (например, ястреб ест сов).

Каждая пищевая цепь заканчивается высшим хищником или суперхищником - животным без естественных врагов (например, крокодил, белый медведь, акула и т.д.). Они являются "хозяевами" своих экосистем.

Когда какой-либо организм умирает, его в конце концов съедают детритофаги (такие, как гиены, стервятники, черви, крабы и т.д.), а остальная часть разлагается с помощью редуцентов (в основном, бактерий и грибов), и обмен энергией продолжается.

Стрелки в пищевой цепи показывают поток энергии, от солнца или гидротермальных источников до высших хищников. По мере того, как энергия перетекает из организма в организм, она теряется на каждом звене цепи. Совокупность многих пищевых цепей называется пищевой сетью .

Положение некоторых организмов в пищевой цепи может варьироваться, поскольку их рацион отличается. Например, когда медведь ест ягоды, он выступает как растительноядное животное. Когда он съедает грызуна, питающегося растениями, то становиться первичным хищником. Когда медведь ест лосося, то выступает суперхищником (это связано с тем, что лосось является первичным хищником, поскольку он питается селедкой, а она ест зоопланктон, который питается фитопланктоном, вырабатывающим собственную энергию благодаря солнечному свету). Подумайте о том, как меняется место людей в пищевой цепи, даже часто в течение одного приема пищи.

Типы пищевых цепей

В природе, как правило, выделяют два типа пищевых цепей: пастбищную и детритную.

Пастбищная пищевая цепь

Схема пастбищной пищевой цепи

Этот тип пищевой цепи начинается с живых зеленых растений, предназначенных для питания растительноядных животных, которыми питаются хищники. Экосистемы с таким типом цепи напрямую зависят от солнечной энергии.

Таким образом, пастбищный тип пищевой цепи зависит от автотрофного захвата энергии и перемещения ее по звеньям цепи. Большинство экосистем в природе следуют этому типу пищевой цепи.

Примеры пастбищной пищевой цепи:

  • Трава → Кузнечик → Птица → Ястреб;
  • Растения → Заяц → Лиса → Лев.

Детритная пищевая цепь

Схема детритной пищевой цепи

Этот тип пищевой цепи начинается с разлагающегося органического материала - детрита - который употребляют детритофаги. Затем, детритофагами питаются хищники. Таким образом, подобные пищевые цепи меньше зависят от прямой солнечной энергии, чем пастбищные. Главное для них - приток органических веществ, производимых в другой системе.

К примеру, такой тип пищевой цепи встречается в разлагающейся подстилке .

Энергия в пищевой цепи

Энергия переносится между трофическими уровнями, когда один организм питается другим и получает от него питательные вещества. Однако это движение энергии неэффективное, и эта неэффективность ограничивает протяженность пищевых цепей.

Когда энергия входит в трофический уровень, часть ее сохраняется как биомасса, как часть тела организмов. Эта энергия доступна для следующего трофического уровня. Как правило, только около 10% энергии, которая хранится в виде биомассы на одном трофическом уровне, сохраняется в виде биомассы на следующем уровне.

Этот принцип частичного переноса энергии ограничивает длину пищевых цепей, которые, как правило, имеют 3-6 уровней.

На каждом уровне, энергия теряется в виде тепла, а также в форме отходов и отмершей материи, которые используют редуценты.

Почему так много энергии выходит из пищевой сети между одним трофическим уровнем и другим? Вот несколько основных причин неэффективной передачи энергии:

  • На каждом трофическом уровне значительная часть энергии рассеивается в виде тепла, поскольку организмы выполняют клеточное дыхание и передвигаются в повседневной жизни.
  • Некоторые органические молекулы, которыми питаются организмы, не могут перевариваться и выходят в виде фекалий.
  • Не все отдельные организмы в трофическом уровне будут съедены организмами со следующего уровня. Вместо этого, они умирают, не будучи съеденными.
  • Кал и несъеденные мертвые организмы становятся пищей для редуцентов, которые их метаболизируют и преобразовывают в свою энергию.

Итак, ни одна из энергий на самом деле не исчезает - все это в конечном итоге приводит к выделению тепла.

Значение пищевой цепи

1. Исследования пищевой цепи помогают понять кормовые отношения и взаимодействие между организмами в любой экосистеме.

2. Благодаря им, есть возможность оценить механизм потока энергии и циркуляцию веществ в экосистеме, а также понять движение токсичных веществ в экосистеме.

3. Изучение пищевой цепи позволяет понять проблемы биоусиления.

В любой пищевой цепи, энергия теряется каждый раз, когда один организм потребляется другим. В связи с этим, должно быть намного больше растений, чем растительноядных животных. Автотрофов существует больше, чем гетеротрофов, и поэтому большинство из них являются растительноядными, нежели хищниками. Хотя между животными существует острая конкуренция, все они взаимосвязаны. Когда один вид вымирает, это может воздействовать на множество других видов и иметь непредсказуемые последствия.


Пищевая цепь – это последовательное превращение элементов неорганической природы (биогенных и др.) с помощью растений и света в органические вещества (первичную продукцию), а последних – животными организмами на последующих трофических (пищевых) звеньях (ступенях) в их биомассу.

Пищевая цепь начинается с солнечной энергии, и каждое звено в цепи представляет собой изменение энергии. Все пищевые цепи в сообществе образуют трофические отношения.

Между компонентами экосистемы существуют разнообразные связи, и в первую очередь их связывает воедино поток энергии и круговорот вещества. Каналы, по которым течет через сообщество энергия, носят имя цепей питания. Энергия солнечного луча, падающего на верхушки деревьев или на поверхность пруда, улавливается зелеными растениями — будь то огромные деревья или крошечные водоросли, — и используется ими в процессе фотосинтеза. Эта энергия идет на рост, развитие и размножение растений. Растения, как производителей органического вещества, называют продуцентами. Продуценты, в свою очередь, служат источником энергии для тех, кто питается растениями, а, в конечном счете, для всего сообщества.

Первыми потребителями органического вещества являются растительноядные животные — консументы I порядка. Хищники, поедающие растительноядных жертв, выступают в роли консументов II порядка. При переходе от одного звена к другому энергия неизбежно теряется, поэтому в пищевой цепи редко бывает более 5-6 участников. Завершают круговорот редуценты — бактерии и грибы разлагают трупы животных, остатки растений, превращая органику в минеральные вещества, которые снова усваиваются продуцентами.

В пищевую цепь входят все растения и животные, а также содержащиеся в воде химические элементы, необходимые для фотосинтеза. Пищевая цепь представляет собой связную линейную структуру из звеньев, каждое из которых связано с соседними звеньями отношениями «пища - потребитель». В качестве звеньев цепи выступают группы организмов, например, конкретные биологические виды . В воде пищевая цепь начинается с мель- чайших растительных организмов — водорослей, живущих в эвфотической зоне и использующих солнечную энергию для синтеза органических веществ из растворенных в воде неорганических химических питательных веществ и угле- кислоты. В процессе переноса энергии пищи от ее источника — растений — через ряд организмов, происходящих путем поедания одних организмов другими, наблюдается рассеивание энергии, часть которой переходит в тепло. При каждом очередном переходе от одного трофического звена (ступени) к другому теряется до 80-90% потенциальной энергии. Это ограничивает возможное число этапов, или звеньев цепи, обычно до четырех-пяти. Чем короче пищевая цепь, тем большее количество доступной энергии сохраняется.

В среднем из 1 тыс. кг растений образуется 100 кг тела травоядных животных. Хищники, поедающие травоядных, могут построить из этого количества 10 кг своей биомассы, а вторичные хищники только 1 кг. Например, человек съедает большую рыбу. Ее пищу составляют мелкие рыбы, потребляющие зоопланктон, который живет за счет фитопланктона, улавливающего солнечную энергию.

Таким образом, для построения 1 кг тела человека требуется 10 тыс. кг фитопланктона. Следовательно, масса каждого последующего звена в цепи прогрессивно уменьшается. Эта закономерность носит название правила экологической пирамиды. Различают пирамиду чисел, отражающую число особей на каждом этапе пищевой цепи, пирамиду биомассы — количество синтезированного на каждом уровне органического вещества и пирамиду энергии — количество энергии в пище. Все они имеют одинаковую направленность, различаясь в абсолютном значении цифровых величин. В реальных условиях цепи питания могут иметь разное число звеньев. Кроме того, цепи питания могут перекрещиваться, образуя сети питания. Почти все виды животных, за исключением очень специализированных в пищевом отношении, используют не один какой-нибудь источник пищи, а несколько). Чем больше видовое разнообразие в биоценозе, тем он устойчивее. Так, в цепи питания растения-заяц-лиса — всего три звена. Но лиса питается не только зайцами, но и мышами и птицами. Общая закономерность состоит в том, что в начале пищевой цепи всегда находятся зеленые растения, а в конце — хищники. С каждым звеном в цепи организмы становятся крупнее, они медленнее размножаются, их число уменьшается. Виды, занимающие положение низших звеньев, хотя и обеспечены питанием, но сами интенсивно потребляются (мышей, например, истребляют лисы, волки, совы). Отбор идет в направлении увеличения плодовитости. Такие организмы превращаются в кормовую базу высших животных без всяких перспектив прогрессивной эволюции.

В любой геологической эпохе с наибольшей скоростью эволюционировали организмы, стоящие на высшем уровне в пищевых взаимоотношениях, например в девоне — кистепрые рыбы — рыбоядные хищники; в каменноугольном периоде — хищные стегоцефалы. В пермском — рептилии, охотившиеся на стегоцефалов. На протяжении всей мезозойской эры млекопитающие истреблялись хищными рептилиями и только вследствие вымирания последних в конце мезозоя заняли господствующее положение, дав большое число форм.

Пищевые отношения — самый важный, но не единственный тип отношений между видами в биоценозе. Один вид может влиять на другой разными путями. Организмы могут поселяться на поверхности или внутри тела особей другого вида, могут формировать среду обитания для одного или нескольких видов, влиять на движение воздуха, температуру, освещенность окружающего пространства. Примеры связей, влияющих на местообитания видов, многочисленны. Морские желуди — морские ракообразные, ведущие сидячеприкрепленный образ жизни, нередко поселяются на коже китов. Личинки многих мух живут в коровьем навозе. Особенно большая роль в создании или изменении среды для других организмов, принадлежит растениям. В зарослях растений, будь то лес или луг, температура колеблется в меньшей степени, чем на открытых пространствах, а влажность выше.
Нередко один вид участвует в распространении другого. Животные переносят семена, споры, пыльцу растений, а также других более мелких животных. Семена растений могут захватываться животными при случайном соприкосновении, особенно если семена или соплодия имеют специальные зацепки, крючки (череда, лопух). При поедании плодов, ягод, не поддающихся перевариванию, семена выделяются вместе с пометом. Млекопитающие, птицы и насекомые переносят на своем теле многочисленных клещей.

Все эти многообразные связи обеспечивают возможность существования видов в биоценозе, удерживают их друг возле друга, превращая в стабильные саморегулирующиеся сообщества.

Связь между двумя звеньями устанавливается, если одна группа организмов выступает в роли пищи для другой группы. Первое звено цепи не имеет предшественника, то есть организмы из этой группы в качестве пищи не использует другие организмы, являясь продуцентами . Чаще всего на этом месте находятся растения , грибы , водоросли . Организмы последнего звена в цепи не выступают в роли пищи для других организмов.

Каждый организм обладает некоторым запасом энергии, то есть можно говорить о том, что у каждого звена цепи есть своя потенциальная энергия . В процессе питания потенциальная энергия пищи переходит к её потребителю.

Все виды, образующие пищевую цепь, существуют за счет органического вещества, созданного зелеными растениями. При этом действует важная закономерность, связанная с эффективностью использования и превращения энергии в процессе питания. Сущность ее заключается в следующем.

Суммарно лишь около 1% лучистой энергии Солнца, падающей на растение, превращается в потенциальную энергию химических связей синтезированных органических веществ и может быть использовано в дальнейшем гетеротрофными организмами при питании. Когда животное поедает растение, большая часть энергии, содержащейся в пище, расходуется на различные процессы жизнедеятельности, превращаясь при этом в тепло и рассеиваясь. Только 5-20% энергии пищи переходит во вновь построенное вещество тела животного. Если хищник поедает травоядное животное, то снова теряется большая часть заключенной в пище энергии. Вследствие таких больших потерь полезной энергии пищевые цепи не могут быть очень длинными: обычно они состоят не более чем из 3-5 звеньев (пищевых уровней).

Всегда количество растительного вещества, служащего основой цепи питания, в несколько раз больше, чем общая масса растительноядных животных, а масса каждого из последующих звеньев пищевой цепи также уменьшается. Эту очень важную закономерность называют правилом экологической пирамиды.

При переносе потенциальной энергии от звена к звену до 80-90 % теряется в виде теплоты. Данный факт ограничивает длину цепи питания, которая в природе обычно не превышает 4-5 звеньев. Чем длиннее трофическая цепь, тем меньше продукция её последнего звена по отношению к продукции начального.

В Байкале пищевая цепь в пелагиали состоит из пяти звеньев: водоросли — эпишура — мак- рогектопус — рыбы — нерпа или хищные рыбы (ленок, таймень, взрослые особи омуля и др.). Человек участвует в этой цепи как последнее звено, но он может потреблять продукцию и более низких звеньев, например, рыб или даже беспозвоночных при использовании в пищу ракообразных, водных растений и т. п. Короткие трофические цепи менее устойчивы и подвержены большим колебаниям, чем длинные и сложные по структуре.

2. УРОВНИ И СТРУКТУРНЫЕ ЭЛЕМЕНТЫ ПИЩЕВОЙ ЦЕПИ

Обычно для каждого звена цепи можно указать не одно, а несколько других звеньев, связанных с ним отношением «пища - потребитель». Так траву едят не только коровы, но и другие животные, а коровы являются пищей не только для человека. Установление таких связей превращает пищевую цепь в более сложную структуру - трофическую сеть .

В некоторых случаях в трофической сети можно сгруппировать отдельные звенья по уровням таким образом, что звенья одного уровня выступают для следующего уровня только в качестве пищи. Такая группировка называется трофическими уровнями .

Начальным уровнем (звеном) всякой трофической (пищевой) цепи в водоеме являются растения (водоросли). Растения никого не поедают (за исключением небольшого числа видов насекомоядных растений — росянка, жирянка, пузырчатка, непентес и некоторые другие), напротив, они являются источником жизни для всех животных организмов. Поэтому первой ступенью цепи хищников являются травоядные (пастбищные) животные. Следом за ними идут мелкие плотоядные, питающиеся травоядными, затем звено более крупных хищников. В цепи каждый последующий организм крупнее предыдущего. Цепи хищников способствуют устойчивости трофической цепочки.

Пищевая цепь сапрофитов – это замыкающее звено трофической цепочки. Сапрофиты питаются мертвыми организмами. Химические вещества, образующиеся при разложении мертвых организмов, снова потребляются растениями – организмами-продуцентами, с которых начинаются все трофические цепи.

3. ТИПЫ ТРОФИЧЕСКИХ ЦЕПЕЙ

Есть несколько классификаций трофических цепей.

По первой классификации существуют в Природе три трофические цепи (трофическая — значит, обусловленная Природой для разрушения).

Первая трофическая цепь объединяет следующие свободно живущие организмы:

    растительноядные животные;

    хищники — плотоядные животные;

    всеядные, включая человека.

    Основной принцип трофической цепи: «Кто кого ест?»

    Вторая трофическая цепь объединяет живые существа, которые метаболизируют все и всех. Эту задачу выполняют редуценты. Они доводят сложные вещества погибших организмов до простых веществ. Свойство биосферы — все представители биосферы смертны. Биологическая задача редуцентов — разлагать умерших.

    По второй классификации, существует два основных типа трофических цепей — пастбищные и детритные.

    В пастбищной трофической цепи (цепь выедания) основу составляют автотрофные организмы, затем идут потребляющие их растительноядные животные (например, зоопланктон, питающийся фитопланктоном), потом хищники (консументы) 1-го порядка (например, рыбы, потребляющие зоопланктон), хищники 2-го порядка (например, судак, питающийся другими рыбами). Особенно длинны трофические цепи в океане, где многие виды (например, тунцы) занимают место консументов 4-го порядка.

    В детритных трофических цепях (цепи разложения), наиболее распространенных в лесах, большая часть продукции растений не потребляется непосредственно растительноядными животными, а отмирает, подвергаясь затем разложению сапротрофными организмами и минерализации. Таким образом, детритные трофические цепи начинаются от детрита, идут к микроорганизмам, которые им питаются, а затем к детритофагам и к их потребителям — хищникам. В водных экосистемах (особенно в эвтрофных водоемах и на больших глубинах океана) значит, часть продукции растений и животных также поступает в детритные трофические цепи.

    ЗАКЛЮЧЕНИЕ

    Все живые организмы, населяющие нашу планету, существуют не сами по себе, они зависят от окружающей среды и испытывают на себе ее воздействия. Это точно согласованный комплекс множества факторов окружающей среды, и приспособление к ним живых организмов обуславливает возможность существования всевозможных форм организмов и самого различного образования их жизни.

    Главная функция биосферы заключается в обеспечении круговорота химических элементов, который выражается в циркуляции веществ между атмосферой, почвой, гидросферой и живыми организмами.

    Все живые существа являются объектами питания других, т.е. связаны между собой энергетическими отношениями. Пищевые связи в сообществах — это механизмы передачи энергии от одного организма к другому. В каждом сообществе трофические связи переплетены в сложную сеть .

    Организмы любого вида являются потенциальной пищей многих других видов

    трофические сети в биоценозах очень сложные, и создается впечатление, что энергия, поступающая в них, может долго мигрировать от одного организма к другому. На самом деле путь каждой конкретной порции энергии, накопленной зелеными растениями, короток; она может передаваться не более, чем через 4-6 звеньев ряда, состоящего из последовательно питающихся друг другом организмов. Такие ряды, в которых можно проследить пути расходования изначальной дозы энергии, называют цепями питания. Место каждого звена в цепи питания называют трофическим уровнем. Первый трофический уровень — это всегда продуценты, создатели органической массы; растительные консументы относятся ко второму трофическому уровню; плотоядные, живущие за счет растительноядных форм — к третьему; потребляющие других плотоядных — к четвертому и т.д. Таким образом, различают консументов первого, второго и третьего порядков, занимающих разные уровни в цепях питания. Естественно, что основную роль при этом играет пищевая специализация консументов. Виды с широким спектром питания включаются в пищевые цепи на разных трофических уровнях.

    СПИСОК ЛИТЕРАТУРЫ

  1. Акимова Т.А., Хаскин В.В. Экология. Учебное пособие. –М.: ДОНИТИ, 2005.

    Моисеев А.Н. Экология в современном мире // Энергия. 2003. № 4.

Основное условие существования экосистемы — это поддержание круговорота веществ и превращения энергии. Оно обеспечивается благодаря трофическим (пищевым) связям между видами, относящимися к разным функциональным группам. Именно на основе этих связей органические вещества, синтезированные продуцентами из минеральных веществ с поглощением солнечной энергии, передаются консументам и претерпевают химические превращения. В результате жизнедеятельности преимущественно редуцентов атомы основных биогенных химических элементов переходят из органических веществ в неорганические (СО 2 , NH 3 , H 2 S, H 2 O). Затем неорганические вещества используются продуцентами для создания из них новых органических веществ. А они снова с помощью продуцентов вовлекаются в круговорот. Если бы эти вещества не использовались многократно, жизнь на Земле была бы невозможна. Ведь запасы веществ, поглощаемых продуцентами, в природе не безграничны. Для осуществления полноценного круговорота веществ в экосистеме должны быть в наличии все три функциональные группы организмов. И между ними должно происходить постоянное взаимодействие в виде трофических связей с образованием трофических (пищевых) цепей, или цепей питания.

Цепь питания (пищевая цепь) — последовательность организмов, в которой происходит поэтапный перенос вещества и энергии от источника (предыдущего звена) к потребителю (последующему звену).

При этом один организм может поедать другой, питаться его отмершими остатками или продуктами жизнедеятельности. В зависимости от вида исходного источника вещества и энергии цепи питания подразделяют на два типа: пастбищные (цепи выедания) и детритные (цепи разложения).

Пастбищные цепи (цепи выедания) — пищевые цепи, которые начинаются с продуцентов и включают консументов разных порядков. В общем виде пастбищную цепь можно показать следующей схемой:

Продуценты -> Консументы I порядка -> Консументы II порядка -> Консументы III порядка

Например: 1) пищевая цепь луга: клевер луговой — бабочка — лягушка — змея; 2) пищевая цепь водоема: хламидомонада — дафния — пескарь — судак. Стрелки в схеме показывают направление переноса вещества и энергии в цепи питания.

Каждый организм в цепи питания относится к определенному трофическому уровню.

Трофический уровень — совокупность организмов, которые в зависимости от способа их питания и вида корма составляют определенное звено пищевой цепи.

Трофические уровни принято нумеровать. Первый трофический уровень составляют автотрофные организмы — растения (продуценты), на втором трофическом уровне находятся растительноядные животные (консументы I порядка), на третьем и последующих уровнях — плотоядные животные (консументы II, III и т. д. порядков).

В природе почти все организмы питаются не одним, а несколькими видами корма. Следовательно, любой организм может находиться на разных трофических уровнях в одной и той же пищевой цепи в зависимости от характера корма. Например, ястреб, питаясь мышами, занимает третий трофический уровень, а поедая змей — четвертый. Кроме того, один и тот же организм может быть звеном разных пищевых цепей, связывая их между собой. Так, ястреб может съесть ящерицу, зайца или змею, которые входят в состав разных цепей питания.

В природе пастбищные цепи в чистом виде не встречаются. Они связаны между собой общими пищевыми звеньями и образуют пищевую сеть , или сеть питания . Ее наличие в экосистеме способствует выживанию организмов при недостатке определенного вида корма благодаря возможности использовать другой корм. И чем шире видовое разнообразие особей в экосистеме, тем больше пищевых цепей в составе пищевой сети и тем устойчивее экосистема. Выпадение одного звена из цепи питания не нарушит всей экосистемы, так как могут быть использованы источники питания из других пищевых цепей.

Детритные цепи (цепи разложения) — пищевые цепи, которые начинаются с детрита, включают детритофагов и редуцентов и заканчиваются минеральными веществами. В детритных цепях происходит перенос вещества и энергии детрита между детритофагами и редуцентами через продукты их жизнедеятельности.

Например: погибшая птица — личинки мух — плесневые грибы — бактерии — минеральные вещества. Если детрит не требует механического разрушения, то он сразу превращается в перегной с последующей минерализацией.

Благодаря детритным цепям в природе замыкается круговорот веществ. Отмершие органические вещества в детритных цепях превращаются в минеральные, которые поступают в среду, а из нее поглощаются растениями (продуцентами).

Пастбищные цепи преимущественно располагаются в надземных, а цепи разложения — в подземных ярусах экосистем. Взаимосвязь пастбищных цепей с детритными осуществляется через детрит, попадающий в почву. Детритные цепи связаны с пастбищными через минеральные вещества, извлекаемые из почвы продуцентами. Благодаря взаимосвязи пастбищных и детритных цепей в экосистеме формируется сложная пищевая сеть, обеспечивающая постоянство процессов превращения вещества и энергии.

Экологические пирамиды

Процесс превращения вещества и энергии в пастбищных цепях имеет определенные закономерности. На каждом трофическом уровне пастбищной цепи не вся съеденная биомасса идет на образование биомассы консументов данного уровня. Значительная ее часть затрачивается на процессы жизнедеятельности организмов: движение, размножение, поддержание температуры тела и т. д. Кроме того, часть корма не усваивается и в виде продуктов жизнедеятельности попадает в окружающую среду. Другими словами, большая часть вещества и содержащейся в нем энергии при переходе от одного трофического уровня к другому теряется. Процент усвояемости сильно варьирует и зависит от состава пищи и биологических особенностей организмов. Многочисленные исследования показали, что на каждом трофическом уровне пищевой цепи теряется в среднем около 90 % энергии, и только 10 % переходит на следующий уровень. Американский эколог Р. Линдеман в 1942 г. сформулировал эту закономерность как правило 10 % . Используя это правило, можно рассчитать количество энергии на любом трофическом уровне цепи питания, если ее показатель известен на одном из них. С некоторой степенью допущения это правило используют и для определения перехода биомассы между трофическими уровнями.

Если на каждом трофическом уровне пищевой цепи определить число особей, или их биомассу, или количество заключенной в ней энергии, то станет очевидным уменьшение этих величин по мере продвижения к концу цепи питания. Эту закономерность впервые установил английский эколог Ч. Элтон в 1927 г. Он назвал ее правилом экологической пирамиды и предложил выражать графически. Если любую из вышеуказанных характеристик трофических уровней изобразить в виде прямоугольников с одинаковым масштабом и расположить их друг над другом, то получится экологическая пирамида .

Известны три типа экологических пирамид. Пирамида чисел отражает численность особей в каждом звене пищевой цепи. Однако в экосистеме второй трофический уровень (консументы I порядка ) численно может быть богаче первого трофического уровня (продуцентов ). В этом случае получается перевернутая пирамида чисел. Это объясняется участием в таких пирамидах особей, не равноценных по размерам. Примером может служить пирамида чисел, состоящая из лиственного дерева, листогрызущих насекомых, мелких насекомоядных и крупных хищных птиц. Пирамида биомассы отражает количество органического вещества, накопленного на каждом трофическом уровне пищевой цепи. Пирамида биомассы в наземных экосистемах правильная. А в пирамиде биомассы для водных экосистем биомасса второго трофического уровня, как правило, больше биомассы первого при определении ее в конкретный момент. Но поскольку водные продуценты (фитопланктон) имеют высокую скорость образования продукции, то в конечном итоге их биомасса за сезон все равно будет больше биомассы консументов I порядка. А это значит, что в водных экосистемах также соблюдается правило экологической пирамиды. Пирамида энергии отражает закономерности расходования энергии на разных трофических уровнях.

Таким образом, запас вещества и энергии, накопленный растениями в пастбищных пищевых цепях, быстро расходуется (выедается), поэтому эти цепи не могут быть длинными. Обычно они включают от трех до пяти трофических уровней.

В экосистеме продуценты, консументы и редуценты связаны трофическими связями и образуют цепи питания: пастбищные и детритные. В пастбищных цепях действует правило 10 % и правило экологической пирамиды. Можно построить три типа экологических пирамид: чисел, биомассы и энергии.

Между автотрофами и гетеротрофами в экосистемах существуют сложные пищевые взаимодействия. Одни организмы поедают другие, и таким образом осуществляют перенос веществ и энергии - основу функционирования экосистемы.

Внутри экосистемы органические вещества создаются автотрофными организмами, например, растениями. Растения поедают животные, которых, в свою очередь, поедают другие животные. Такая последовательность называется пищевой цепью (рис.1), а каждое звено пищевой цепи называется трофическим уровнем.

Различают

Пастбищные пищевые цепи (цепи выедания) - пищевые цепи, которые начинаются с автотрофных фотосинтезирующих или хемосинтезирующих организмов (рис. 2.). Пастбищные пищевые цепи распространены преимущественно в сухопутных и морских экосистемах.

Примером может служить пастбищная пищевая цепь луга. Начинается такая цепь с улавливания солнечной энергии растением. Бабочка, питающаяся нектаром цветка, представляет собой второе звено в этой цепи. Стрекоза - хищное летающее насекомое - нападает на бабочку. Спрятавшаяся среди зеленой травы лягушка ловит стрекозу, но сама служит добычей для такого хищника, как уж. Целый день уж мог бы переваривать лягушку, но еще не успело зайти солнце, как сам стал добычей другого хищника.

Пищевая цепь, идущая от растения через бабочку, стрекозу, лягушку, ужа к ястребу, указывает путь направления движения органических веществ, а также содержащейся в них энергии.

В океанах и морях автотрофные организмы (одноклеточные водоросли) существуют только до глубины проникновения света (максимум до 150-200 м). Гетеротрофные организмы, обитающие в более глубоких слоях воды, ночью поднимаются к поверхности, чтобы питаться водорослями, а утром вновь уходят на глубину, совершая суточные вертикальные миграции протяженностью до 500-1000 м. В свою очередь, с наступлением утра гетеротрофные организмы из еще более глубоких слоев поднимаются наверх, чтобы питаться за счет опускающихся из поверхностных слоев других организмов.

Таким образом, в глубоких морях и океанах существует своеобразная "пищевая лестница", благодаря которой органическое вещество, созданное автотрофными организмами в поверхностных слоях воды, переносится по цепочке живых организмов до самого дна. В этой связи некоторые морские экологи считают всю водную толщу единым биогеоценозом. Другие полагают, что условия среды в поверхностных и придонных слоях воды настолько различны, что их нельзя рассматривать как единый биогеоценоз.

Детритные пищевые цепи (цепи разложения) - пищевые цепи, которые начинаются с детрита - отмерших остатков растений, трупов и экскрементов животных (рис.2).

Детритные цепи наиболее характерны для сообществ континентальных водоемов, дна глубоких озер, океанов, где многие организмы питаются детритом, образованным отмершими организмами верхних освещенных слоев водоема или попавшим в водоем из наземных экосистем, например, в виде листового опада.

Экосистемы дна морей и океанов, куда не проникает солнечный свет, существуют только за счет постоянного оседания туда отмерших организмов, обитающих в поверхностных слоях воды. Общая масса этого вещества в Мировом океане за год достигает не менее нескольких сотен миллионов тонн.

Распространены детритные цепи также и в лесах, где большая часть ежегодного прироста живой массы растений не потребляется непосредственно растительноядными животными, а отмирает, образуя опад, и разлагается затем сапротрофными организмами с последующей минерализацией редуцентами. Большое значение в разложении отмерших остатков растительного происхождения, особенно древесины, имеют грибы.

Гетеротрофные организмы, питающиеся непосредственно детритом, называются детритофагами. В наземных экосистемах ими являются многие виды насекомых, червей и др. Крупные детритофаги, к которым относятся некоторые виды птиц (грифы, вороны и т.д.) и млекопитающих (гиены и пр.) называют падальщиками.

В водных экосистемах наиболее распространенными детритофагами являются членистоногие - водные насекомые и их личинки, и ракообразные. Детритофагами могут питаться другие, более крупные гетеротрофные организмы, которые могут сами служить пищей для хищников.

Трофические уровни

Обычно различные трофические уровни в экосистемах не разделены в пространстве. Однако в некоторых случаях они достаточно четко дифференцированы. Например, в геотермальных источниках автотрофные организмы - сине-зеленые водоросли и автотрофные бактерии, образующие специфические водорослево-бактериальные сообщества ("маты") распространены при температуре свыше 40-45° С. При более низких температурах они не выживают.

С другой стороны, гетеротрофные организмы (моллюски, личинки водных насекомых и др.) в геотермальных источниках не встречаются при температурах более 33-36° С, поэтому они питаются фрагментами мата, сносимого течением в зоны с более низкой температурой.

Таким образом, в таких геотермальных источниках четко выделяется автотрофная зона, где распространены только автотрофные организмы, и гетеротрофная зона, где автотрофные организмы отсутствуют и встречаются только гетеротрофные организмы.

Трофические сети

В экологических системах, несмотря на существование ряда параллельных пищевых цепей, например,

травянистая растительность -> грызуны -> мелкие хищники
травянистая растительность -> копытные -> крупные хищники,

которые объединяют обитателей почвы, травянистого покрова, древесного яруса, существуют и другие взаимосвязи. В большинстве случаев один и тот же организм может служить источником пищи для многих организмов и тем самым являться составной частью различных пищевых цепей и жертвой разных хищников. Например, дафнию может съесть не только мелкая рыба, но и хищный рачок циклоп, а плотву - не только щука, но и выдра.

Трофическая структура сообщества отражает соотношение между продуцентами, консументами (отдельно первого, второго и т.д. порядков) и редуцентами, выраженное или количеством особей живых организмов, или их биомассой, или заключенной в них энергией, рассчитанными на единицу площади в единицу времени.


Цель: расширить знания о биотических факторах среды.

Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, пресмыкающихся, птиц, млекопитающих), коллекции насекомых, влажные препараты животных, иллюстрации различных растений и животных.

Ход работы:

1. Используйте оборудование и составьте две цепи питания. Помните, что цепь всегда начинается продуцентом и заканчивается редуцентом.

________________ →________________→_______________→_____________

2. Вспомните свои наблюдения в природе и составьте две цепи питания. Подпишите продуценты, консументы (1 и 2 порядков), редуценты.

________________ →________________→_______________→_____________

_______________ →________________→_______________→_____________

Что такое цепь питания и что лежит в её основе? Чем определяется устойчи-вость биоценоза? Сформулируйте вывод.

Вывод: ______________________________________________________________________________________________________________________________________________________________________________________________________________________________

3. Назовите организмы, которые должны быть на пропущенном месте следующих пищевых цепей

ЯСТРЕБ
ЛЯГУШКА
ЗМЕЕЯД
ВОРОБЕЙ
МЫШЬ
КОРОЕД
ПАУК

1. Из предложенного списка живых организмов составить трофическую сеть:

2. трава, ягодный кустарник, муха, синица, лягушка, уж, заяц, волк, бактерии гниения, комар, кузнечик. Укажите количество энергии, которое переходит с одного уровня на другой.

3. Зная правило перехода энергии с одного трофического уровня на другой (около10%), постройте пирамиду биомассы третьей пищевой цепи (задание 1). Биомасса растений составляет 40 тонн.

4. Вывод: что отражают правила экологических пирамид?

1. Пшеница → мышь → змея → сапрофитные бактерии

Водоросль → рыбы → чайка → бактерии

2. Трава (продуцент) – кузнечик (консумент I порядка) – птицы (консумент II порядка) – бактерии.

Трава (продуценты) - лось (консумент I порядка) - волк (консумент II порядка) – бактерии.

Вывод: Цепь питания – ряд последовательно питающихся друг другом организмов. Цепи питания начинаются с автотрофов – зеленых растений.

3. нектар цветка → муха → паук → синица → ястреб

древесина → короед → дятел

трава → кузнечик → лягушка → уж → змееяд

листья →мышь → кукушка

семена → воробей → гадюка →аист

4. Из предложенного списка живых организмов составить трофическую сеть:

трава→кузнечик→лягушка→уж→бактерии гниения

кустарник→заяц→волк→муха→бактерии гниения

Это цепочки, сеть состоит из взаимодействия цепочек, но их текстом не ука-зать ну примерно так, главное, что цепь начинается всегда с продуцентов (расте-ний), а заканчивается всегда редуцентами.

Количество энергии всегда переходит по правилам 10 % на каждый следую-щий уровень переходит лишь 10 % всей энергии.

Трофическая (пищевая) цепь – последовательность видов организмов, отражающая движение в экосистеме органических веществ и заключенной в них биохимической энергии в процессе питания организмов. Термин происходит от греч.трофе – питание, пища.

Вывод: Следовательно, первая цепь питания – пастбищная, т.к. начинается с продуцентов, вторая – детритная, т.к. начинается с мертвой органики.

Все компоненты пищевых цепей распределяются на трофические уровни. Трофический уровень – это звено в цепи питания.

Колос, растения семейства злаки, однодольные.