Корреляционный анализ включает в себя. Курсовая работа: Корреляционный анализ

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ - совокупность методов оценки связи между случайными явлениями и событиями, основанных на математической теории корреляции. При этом используются простейшие характеристики, требующие минимума вычислений. Термин «корреляция» обычно отождествляется с понятиями «связь» и «взаимозависимость». Однако они не адекватны. Корреляция является только одним из видов связи между признаками, к-рая проявляется в среднем и носит линейный характер. Если между двумя величинами существует однозначная связь, то такая связь называется функциональной и по одной из величин (причине) можно однозначно определить значение другой величины (следствие). Функц, зависимость является частным выражением случайной (вероятностной, стохастической) зависимости, когда связь проявляется не для каждых значений двух величин, а только в среднем.

К. а. применяется при изучении двух или большего количества случайных величин с целью выявления двух важнейших количественных характеристик: математического уравнения связи между этими величинами и оценки тесноты связи между ними. Исходными данными для определения этих характеристик служат синхронные результаты наблюдения (измерения, эксперимента), т. е. одновременно полученные из опыта статистические данные по признакам, связь между к-рыми изучается. Исходные данные могут быть заданы в виде таблиц с записями результатов наблюдения или их равноценных представлений на магнитной ленте, перфоленте или перфокартах.

К. а. нашел широкое применение в медицине и биологии для определения тесноты и уравнений связи между различными признаками, напр, результаты анализов клин, признаков или специальных обследований, проведенных над здоровыми или больными людьми (см. Корреляция функций организма). Результаты К. а. используются для составления объективных прогнозов заболеваний, оценки состояния больного, течения болезни (см. Прогнозирование). Априори, только по результатам теоретических биол, и мед. исследований, трудно или вовсе невозможно предсказать, как связаны между собой изучаемые признаки. Для того чтобы ответить на этот вопрос, проводят наблюдение или специальный эксперимент.

Двухмерный корреляционный анализ применяется при обработке опытных данных проявления каких-либо двух признаков.

КОРРЕЛЯЦИОННАЯ ТАБЛИЦА. Примечание. В таблице приведены интервалы признаков X и Y, а также частоты их появления (в центре таблицы), подсчитанные по результатам морфометрического анализа микроциркуляторного русла бульбоконъюнктивальной области, где Y - диаметр венулы, а X - диаметр артериолы (в ммк).

Каждый результат опыта представляет собой случайную величину, а объективные закономерности проявляются только во всей совокупности результатов измерения. Поэтому выводы делаются по результатам обработки всей совокупности экспериментальных данных, а не по отдельным значениям, которые являются случайными. Для уменьшения влияния случайного события исходные данные объединяются в группы, что достигается путем составления корреляционной таблицы (см. табл.). Такая таблица содержит интервалы (или их середины) значений двух признаков - У и X, а также частоту появлений значений X и Y в соответствующем интервале этих значений. Эти частоты, подсчитанные по результатам опыта, представляют собой практическую оценку вероятности совместного появления значений X и Y конкретного интервала. Построение корреляционной таблицы является первым этапом обработки исходной информации. Построение корреляционных таблиц и их дальнейшую полную обработку осуществляют быстро на универсальных или специализированных ЭВМ (см. Электронная вычислительная машина). По сгруппированным данным корреляционной таблицы рассчитывают эмпирические характеристики уравнения и тесноты связи. Для определения уравнения связи между Y и X рассчитывают средние значения признака Y в каждом интервале признака X. Т. о. получают для каждого i-го интервала значение Yxi, соединение которых для всех i-интервалов дает эмпирическую линию регрессии, характеризующую форму связи признака Y с признаком X в среднем - график функции Yx= f(x). Если бы между признаками Y и X существовала однозначная связь, уравнения связи было бы достаточно для решения практических и теоретических задач, т. к. с его помощью всегда можно определить значение признака Y, если задано значение X. На практике же связь между Y и X не является однозначной, эта связь является случайной и одному значению X соответствует ряд значений Y. Поэтому необходима еще одна характеристика, измеряющая силу, тесноту связи между Y и X. Такими характеристиками являются дисперсионное (корреляционное) отношение ηух и коэффициент корреляции ryx. Первая из этих величин служит характеристикой тесноты связи между Y и X в произвольной функции f, а ryx - используется только в случае, когда f является линейной функцией.

Величины ηyx и ryx также просто определяются по корреляционной таблице. Расчет обычно ведут в следующем порядке: определяют средние значения обоих признаков X и Y, их средние квадратические отклонения σx и σy, а затем ηxy по формуле:

и ryx по формуле:

где n - общее число опытов, Xcpi - среднее значение X i-го интервала, Ycpj - среднее значение Y j-го интервала, k, l - количество интервалов признаков X и Y соответственно, mi(x) - частота (количество) значений Xcpi. Количественными характеристиками точности определения ηyx и ryx служат их средние квадратические отклонения, которые равны

Значения коэффициента η лежат в пределах между нулем и единицей (0=<ηyx=<1). Если ηyx= 0 (рис., а), то это свидетельствует о том, что признаки Y и X недисперсированы, т. е. регрессия Yx = f(x) не дает связи между признаками Y и X, а при ηyx = 1 существует однозначная связь между Y и X (рис., б, ж). Для ηyx<1 признак Y только частично определяется признаком X, и необходимо изучение дополнительных признаков для повышения достоверности определения Y (рис., г, д, е, и).

Значение коэффициента r лежит в пределах между -1 и +1 (-1=

Многомерный корреляционный анализ - определение уравнения и тесноты связи в случаях, когда число изучаемых признаков больше двух. Так, если Y является сложным признаком и его исход зависит от появления множества признаков Х1, Х2, ..., Хn, то, по экспериментальным данным, должны быть определены: а) уравнение связи признака Y с совокупностью признаков Х1, Х2,..., Хn, т.е. Yx1x2...xn = F(x1, x2...,xn) ; б) теснота связи между Y и совокупностью X1, Х2,..., Хn.

Предварительная обработка результатов наблюдения при многомерном К. а. заключается в том, что для каждой пары признаков определяются значения дисперсионных отношений ηyxi (i = 1,2,..., n) и ηxixj (i!=j) коэффициентов корреляции ryxi и rxixj, а также парные регрессии Yxi = fi(xi). По этим данным затем определяются уравнения множественной регрессии Yx1x2...xn = F (x1,x2,...,xn), множественное дисперсионное отношение ηyx1x2...xn и множественный коэффициент корреляции Ryx1x2...xn. Уравнение множественной регрессии дает возможность определить значение признака Y по совокупности значений X1, Х2, ..., Xn, т. е. при наличии этого уравнения можно прогнозировать значения Y по результатам конкретных значений полученной совокупности (напр., результатов анализа по признакам X1, Х2...Хn). Значение ηyx1x2...xn используется в качестве характеристики тесноты связи между Y и совокупностью признаков Х1, Х2, ...Xn для произвольной функции F, a Ryx1x2...xn - для случая, когда функция F линейна. Коэффициенты ηyx1x2....xn и Ryx1x2...xn принимают значения между нулем и единицей. Включение в рассмотрение при многомерном К. а. дополнительных признаков дает возможность получить значения ηyx1x2...xn, Ryx1x2...xn ближе к единице и таким образом повысить точность прогноза признака Y по множественному уравнению регрессии.

В качестве примера рассмотрим результаты парного К. а., а также уравнение множественной регрессии и множественный коэффициент корреляции между признаками: Y - устойчивый псевдопарез, X1 - латерализация моторного дефекта в конечностях справа, Х2 - то же в конечностях слева, Х3 - вегетативные кризы. Значения дисперсионных отношений и коэффициентов парной корреляции для них будут соответственно ηyx1 = 0,429, ηyx2 = 0,616, ηyx3 = -0,334, a ryx1 = 0,320, ryx2 = 0,586, ryx3 = -0,325. По уравнению множественной линейной регрессии Yх1х2х3 = 0,638 x1 + 0,839 x2 - 0,195 x3. Коэффициент множественной корреляции будет выражаться величиной Ryx1x2x3 =0,721. Из примера видно, что по данным Х1, Х2 и Х3 с достаточной для практики точностью можно прогнозировать устойчивый псевдопарез.

Методы К. а. дают также возможность получить динамические характеристик и. В этом случае изучаемые признаки (напр., ЭКГ, ЭЭГ и т. д.) рассматриваются как случайные функции Y(t) и Х(t). По результатам наблюдения над этими функциями также определяются две важнейшие характеристики: а) оценка оператора связи (математического уравнения) между Y (t) и X(t); б) оценка тесноты связи между ними. В качестве характеристик тесноты связи принимаются дисперсионные и корреляционные функции случайных функций Y (t) и X(t). Эти функции представляют собой обобщение дисперсионных отношений и коэффициентов корреляции. Так, нормированная взаимная дисперсионная функция ηyx(t) каждого фиксированного значения t представляет собой дисперсионное отношение между значениями признаков Y (t) и Х(t). Аналогично нормированная взаимная корреляционная функция Ryx(t) представляет собой для каждого фиксированного значения t коэффициент корреляции между признаками Y(t) и X(t). Характеристика линейной связи (зависимости) для одной и той же исследуемой величины в различные моменты времени носит название автокорреляции.

К. а. является одним из методов решения задачи идентификации, нашедшей широкое распространение при получении математических моделей и автоматизации мед.-биол, исследования и лечения.

Библиография: Вычислительные системы и автоматическая диагностика заболеваний сердца, под ред. Ц. Касереса и Л. Дрейфуса, пер. с англ., М., 1974; Гутман С. Р. О двух моделях электроэнцефалограммы, сходящихся к нормальному случайному процессу, в кн.: Управление и информ. процессы в живой природе, под ред. В. В. Ларина, с. 205, М., 1971; Заславская Р. М., Перепел-кин Е. Г. и Ахметов К. Ж. Корреляционные связи между показателями гемокоагуляции и липидного обмена у больных.стенокардией в течение суток, Кардиология, т. 17, № 6, с. 111, 1977; К р а м e р Г. Математические методы статистики, пер. с англ., М., 1975; Пастернак Е. Б. и др. Исследование электрической активности предсердий при мерцательной аритмии с помощью приборного корреляционного анализа, Кардиология, т. 17, Хя 7, с. 50, 1977; Синицын Б. С. Автоматические корреляторы и их применение, Новосибирск, 1964, библиогр.; У р-б а х В. Ю. Статистический анализ в биологических и медицинских исследованиях, М., 1975, библиогр.

В. Н. Райбман, Н. С. Райбман.

Математические методы анализа и прогнозирования

Корреляционный анализ

Введение

2. Регрессионный анализ

3. Факторный анализ

4. Кластерный анализ

5. Анализ динамики и прогнозирования социально-правовых процессов

Заключение

Между социально-экономическими явлениями и процессами воз­можны два вида зависимости: функциональная и стохастическая. При или иных параметров, характеризующих различные явления. Примеры такого рода зависимостей в социальной среде практически не встречаются.

При стохастической (вероятностной) зависимости конкретному значению зависимой переменной соответствует набор значений объ­ясняющей переменной. Это связано, прежде всего, с тем, что на за­висимую переменную оказывает влияние ряд неучтенных факторов. Кроме того, сказываются ошибки измерения переменных: вследствие случайного разброса значений их значения могут быть указаны лишь с определенной вероятностью.

В социально-экономической сфере приходится сталкиваться со многими явлениями, имеющими вероятностную природу. Так, число совершенных и раскрытых преступлений за фиксированный отрезок времени, число дорожно-транспортных происшествий в каком-либо регионе за определенное время - все это случайные величины.

Для изучения стохастических взаимосвязей существуют специальные методы, в частности корреляционный анализ ("корреляция" ­соотношение, связь между имеющимися явлениями и процессами).

Корреляционный анализ - это использование в определенной последовательности совокупности статистических методов обработки ин­формации, позволяющее исследовать взаимосвязи между различными признаками.

Задачей корреляционного анализа как метода математической статистики является установление формы и направления связи, а также измерение тесноты этой связи между изучаемыми случайными признаками.

В статистике величина линейной зависимости между двумя признаками измеряется посредством простого (выборочного) коэффициента корреляции . Величина линейной зависимости одной перемен­ной от нескольких других измеряется коэффициентом множественной ми после устранение части линейной зависимости, обусловленной связью этих переменных с другими переменными.

По форме корреляционные связи могут быть линейными (прямо­линейными) и нелинейными (криволинейными), а по направлению ­

Прямая связь свидетельствует о том, что с увеличением (уменьшением) значений одного признака увеличиваются (уменьшают­ся) значения другого признака. При обратной связи увеличение (уменьшение) значений одного признака ведет к уменьшению (увели­чению) значений другого признака.



Главная задача корреляционного анализа - измерение тесноты связи - решается путем вычисления различных коэффициентов корре­ляции и проверки их значимости.

Коэффициент корреляции может принимать значения при прямой связи от 0 до +1, а при обратной от -1 до 0. При коэффициен­тах, близких к 0, считается, что статистическая линейная связь между признаками отсутствует; при абсолютных значениях коэффици­ентов, меньших 0,3, - связь слабая; при значениях 0,3...0,5 ­связь умеренная; при 0,5...0,7 - связь значительная; при 0,7...0,9 - связь сильная; если значения коэффициентов больше 0,9, то связь считается очень сильной; если коэффициенты равны +1 или -1, то говорится о функциональной связи (что практически не встречается в статистических исследованиях).

Однако такая упрощенная оценка силы связи не всегда кор­ректна, так как степень уверенности в наличии статистической связи зависит от объема исследуемой совокупности. Чем меньше объем совокупности, тем большим должно быть значение коэффициен­та корреляции для принятия гипотезы о существовании зависимости между признаками. С целью количественного измерения степени уве­ренности в существовании линейной статистической связи между признаками введены понятия уровня значимости и пороговых (крити­ческих) значений коэффициента корреляции.

Проверка значимости полученного коэффициента корреляции состоит в сравнении расчетного значения с критическим. При дан­ном числе измерений и задаваемом уровне значимости находится критическое значение, которое сравнивается с расчетным. Если расчетное больше критического, то связь значима, если меньше, то связь или отсутствует (а такое значение коэффициента корреляции объясняется случайными отклонениями), или выборка мала для ее выявления.

Для определения существования и величины линейной зависи­мости между двумя переменными X и Y необходимо осуществить две процедуры. Первая заключается в графическом отображении точек [{Xi,Yi},i=1,n] на плоскость . Полученный график называется допустимости предположения о линейной зависимости между перемен­ными. Если такое предположение допустимо, то необходимо выразить в количественном виде величину линейной связи. Для этого исполь­зуется выборочный коэффициент корреляции:

где n - количество измерений, Xi,Yi - i-е значения, X,Y - сред­ние значения, sx, sy - среднеквадратические отклонения перемен­ных X и Y соответственно.

В теории статистического анализа корреляционная связь опре­деляется как линейная зависимость в условиях нормальности расп­ределения анализируемых переменных. Поэтому для корректного при­менения корреляционных методов необходимо обосновать близость распределения переменных к нормальному и формы связи к линейной. В противном случае необходимо применять более сложные приемы анализа или другие коэффициенты связи.

Достаточно простой в вычислительном отношении способ про­верки нормальности эмпирического распределения состоит в оценке следующего отношения:

,

где C - среднее абсолютное отклонение, s - среднеквадратическое отклонение.

Если указанное неравенство выполняется, то можно говорить о нормальности эмпирических распределений и корректности примене­ния коэффициента корреляции как меры линейной статистической связи между переменными.

В общем случае на уровень преступности влияет множество фак­торных признаков. К ним относятся социально-экономические, геог­рафические и климатические, демографические и др., а также приз­наки, характеризующие силы и средства, степень организованности органа внутренних дел.

Однако даже при наличии сильной статистически значимой свя­зи между двумя переменными нельзя быть полностью уверенным в их причинно-следственной обусловленности, так как могут существо­вать другие причины (факторы), определяющие их совместную ста­тистическую взаимосвязь. Статистические выводы должны быть всег­да обоснованы надежной теоретической концепцией.

В то же время отсутствие статистически значимой связи не говорит об отсутствии причинно-следственных отношений, а заставляет искать другие пути и средства ее выявления, если содержа­тельная концепция и практический опыт указывают на ее возможное существование.

В научных исследованиях часто возникает необходимость в нахождении связи между результативными и факторными переменными (урожайностью какой-либо культуры и количеством осадков, ростом и весом человека в однородных группах по полу и возрасту, частотой пульса и температурой тела и т.д.).

Вторые представляют собой признаки, способствующие изменению таковых, связанных с ними (первыми).

Понятие о корреляционном анализе

Существует множество Исходя из вышеизложенного, можно сказать, что корреляционный анализ — это метод, применяющийся с целью проверки гипотезы о статистической значимости двух и более переменных, если исследователь их может измерять, но не изменять.

Есть и другие определения рассматриваемого понятия. Корреляционный анализ — это метод обработки заключающийся в изучении коэффициентов корреляции между переменными. При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков, для установления между ними статистических взаимосвязей. Корреляционный анализ — это метод по изучению статистической зависимости между случайными величинами с необязательным наличием строгого функционального характера, при которой динамика одной случайной величины приводит к динамике математического ожидания другой.

Понятие о ложности корреляции

При проведении корреляционного анализа необходимо учитывать, что его можно провести по отношению к любой совокупности признаков, зачастую абсурдных по отношению друг к другу. Порой они не имеют никакой причинной связи друг с другом.

В этом случае говорят о ложной корреляции.

Задачи корреляционного анализа

Исходя из приведенных выше определений, можно сформулировать следующие задачи описываемого метода: получить информацию об одной из искомых переменных с помощью другой; определить тесноту связи между исследуемыми переменными.

Корреляционный анализ предполагает определение зависимости между изучаемыми признаками, в связи с чем задачи корреляционного анализа можно дополнить следующими:

  • выявление факторов, оказывающих наибольшее влияние на результативный признак;
  • выявление неизученных ранее причин связей;
  • построение корреляционной модели с ее параметрическим анализом;
  • исследование значимости параметров связи и их интервальная оценка.

Связь корреляционного анализа с регрессионным

Метод корреляционного анализа часто не ограничивается нахождением тесноты связи между исследуемыми величинами. Иногда он дополняется составлением уравнений регрессии, которые получают с помощью одноименного анализа, и представляющих собой описание корреляционной зависимости между результирующим и факторным (факторными) признаком (признаками). Этот метод в совокупности с рассматриваемым анализом составляет метод

Условия использования метода

Результативные факторы зависят от одного до нескольких факторов. Метод корреляционного анализа может применяться в том случае, если имеется большое количество наблюдений о величине результативных и факторных показателей (факторов), при этом исследуемые факторы должны быть количественными и отражаться в конкретных источниках. Первое может определяться нормальным законом — в этом случае результатом корреляционного анализа выступают коэффициенты корреляции Пирсона, либо, в случае, если признаки не подчиняются этому закону, используется коэффициент ранговой корреляции Спирмена.

Правила отбора факторов корреляционного анализа

При применении данного метода необходимо определиться с факторами, оказывающими влияние на результативные показатели. Их отбирают с учетом того, что между показателями должны присутствовать причинно-следственные связи. В случае создания многофакторной корреляционной модели отбирают те из них, которые оказывают существенное влияние на результирующий показатель, при этом взаимозависимые факторы с коэффициентом парной корреляции более 0,85 в корреляционную модель предпочтительно не включать, как и такие, у которых связь с результативным параметром носит непрямолинейный или функциональный характер.

Отображение результатов

Результаты корреляционного анализа могут быть представлены в текстовом и графическом видах. В первом случае они представляются как коэффициент корреляции, во втором — в виде диаграммы разброса.

При отсутствии корреляции между параметрами точки на диаграмме расположены хаотично, средняя степень связи характеризуется большей степенью упорядоченности и характеризуется более-менее равномерной удаленностью нанесенных отметок от медианы. Сильная связь стремится к прямой и при r=1 точечный график представляет собой ровную линию. Обратная корреляция отличается направленностью графика из левого верхнего в нижний правый, прямая — из нижнего левого в верхний правый угол.

Трехмерное представление диаграммы разброса (рассеивания)

Помимо традиционного 2D-представления диаграммы разброса в настоящее время используется 3D-отображение графического представления корреляционного анализа.

Также используется матрица диаграммы рассеивания, которая отображает все парные графики на одном рисунке в матричном формате. Для n переменных матрица содержит n строк и n столбцов. Диаграмма, расположенная на пересечении i-ой строки и j-ого столбца, представляет собой график переменных Xi по сравнению с Xj. Таким образом, каждая строка и столбец являются одним измерением, отдельная ячейка отображает диаграмму рассеивания двух измерений.

Оценка тесноты связи

Теснота корреляционной связи определяется по коэффициенту корреляции (r): сильная — r = ±0,7 до ±1, средняя — r = ±0,3 до ±0,699, слабая — r = 0 до ±0,299. Данная классификация не является строгой. На рисунке показана несколько иная схема.

Пример применения метода корреляционного анализа

В Великобритании было предпринято любопытное исследование. Оно посвящено связи курения с раком легких, и проводилось путем корреляционного анализа. Это наблюдение представлено ниже.

Исходные данные для корреляционного анализа

Профессиональная группа

смертность

Фермеры, лесники и рыбаки

Шахтеры и работники карьеров

Производители газа, кокса и химических веществ

Изготовители стекла и керамики

Работники печей, кузнечных, литейных и прокатных станов

Работники электротехники и электроники

Инженерные и смежные профессии

Деревообрабатывающие производства

Кожевенники

Текстильные рабочие

Изготовители рабочей одежды

Работники пищевой, питьевой и табачной промышленности

Производители бумаги и печати

Производители других продуктов

Строители

Художники и декораторы

Водители стационарных двигателей, кранов и т. д.

Рабочие, не включенные в другие места

Работники транспорта и связи

Складские рабочие, кладовщики, упаковщики и работники разливочных машин

Канцелярские работники

Продавцы

Работники службы спорта и отдыха

Администраторы и менеджеры

Профессионалы, технические работники и художники

Начинаем корреляционный анализ. Решение лучше начинать для наглядности с графического метода, для чего построим диаграмму рассеивания (разброса).

Она демонстрирует прямую связь. Однако на основании только графического метода сделать однозначный вывод сложно. Поэтому продолжим выполнять корреляционный анализ. Пример расчета коэффициента корреляции представлен ниже.

С помощью программных средств (на примере MS Excel будет описано далее) определяем коэффициент корреляции, который составляет 0,716, что означает сильную связь между исследуемыми параметрами. Определим статистическую достоверность полученного значения по соответствующей таблице, для чего нам нужно вычесть из 25 пар значений 2, в результате чего получим 23 и по этой строке в таблице найдем r критическое для p=0,01 (поскольку это медицинские данные, здесь используется более строгая зависимость, в остальных случаях достаточно p=0,05), которое составляет 0,51 для данного корреляционного анализа. Пример продемонстрировал, что r расчетное больше r критического, значение коэффициента корреляции считается статистически достоверным.

Использование ПО при проведении корреляционного анализа

Описываемый вид статистической обработки данных может осуществляться с помощью программного обеспечения, в частности, MS Excel. Корреляционный предполагает вычисление следующих парамет-ров с использованием функций:

1. Коэффициент корреляции определяется с помощью функции КОРРЕЛ (массив1; массив2). Массив1,2 — ячейка интервала значений результативных и факторных переменных.

Линейный коэффициент корреляции также называется коэффициентом корреляции Пирсона, в связи с чем, начиная с Excel 2007, можно использовать функцию с теми же массивами.

Графическое отображение корреляционного анализа в Excel производится с помощью панели «Диаграммы» с выбором «Точечная диаграмма».

После указания исходных данных получаем график.

2. Оценка значимости коэффициента парной корреляции с использованием t-критерия Стьюдента. Рассчитанное значение t-критерия сравнивается с табличной (критической) величиной данного показателя из соответствующей таблицы значений рассматриваемого параметра с учетом заданного уровня значимости и числа степеней свободы. Эта оценка осуществляется с использованием функции СТЬЮДРАСПОБР (вероятность; степени_свободы).

3. Матрица коэффициентов парной корреляции. Анализ осуществляется с помощью средства «Анализ данных», в котором выбирается «Корреляция». Статистическую оценку коэффициентов парной корреляции осуществляют при сравнении его абсолютной величины с табличным (критическим) значением. При превышении расчетного коэффициента парной корреляции над таковым критическим можно говорить, с учетом заданной степени вероятности, что нулевая гипотеза о значимости линейной связи не отвергается.

В заключение

Использование в научных исследованиях метода корреляционного анализа позволяет определить связь между различными факторами и результативными показателями. При этом необходимо учитывать, что высокий коэффициент корреляции можно получить и из абсурдной пары или множества данных, в связи с чем данный вид анализа нужно осуществлять на достаточно большом массиве данных.

После получения расчетного значения r его желательно сравнить с r критическим для подтверждения статистической достоверности определенной величины. Корреляционный анализ может осуществляться вручную с использованием формул, либо с помощью программных средств, в частности MS Excel. Здесь же можно построить диаграмму разброса (рассеивания) с целью наглядного представления о связи между изучаемыми факторами корреляционного анализа и результативным признаком.

В статье рассматриваются определения корреляции,корреляционного анализа и коэффициента корреляции. Дается определение корреляционной связи и ее основных характеристик.

  • Корреляционно-регрессионный анализ в исследовании факторов рождаемости
  • Оценка факторов рождаемости в Республике Башкортостан

Исследователей нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых выборках. Например, такая связь может наблюдаться между погрешностью аппаратной обработки экспериментальных данных и величиной скачков сетевого напряжения. Другим примером может служить связь между пропускной способностью канала передачи данных и соотношением сигнал/шум.

В 1886 году английский естествоиспытатель Френсис Гальтон для обозначения характера подобного рода взаимодействий ввёл термин «корреляция». Позже его ученик Карл Пирсон разработал математическую формулу, позволяющую дать количественную оценку корреляционным связям признаков.

Зависимости между величинами (факторами, признаками) разделяют на два вида: функциональную и статистическую.

При функциональных зависимостях каждому значению одной переменной величины соответствует определенное значение другой переменной. Кроме того, функциональная связь двух факторов возможна только при условии, что вторая величина зависит только от первой и не зависит ни от каких других величин. В случае зависимости величины от множества факторов, функциональная связь возможна, если первая величина не зависит ни от каких других факторов, кроме входящих в указанное множество.

При статистической зависимости изменение одной из величин влечёт изменение распределения других величин, которые с определенными вероятностями принимают некоторые значения.

Значительно больший интерес представляет другой частный случай статистической зависимости, когда существует взаимосвязь значений одних случайных величин со средним значением других, при той особенности, что в каждом отдельном случае любая из взаимосвязанных величин может принимать различные значения.

Такого рода зависимость между переменными величинами называется корреляционной, или корреляцией.

Корреляционный анализ - метод, позволяющий обнаружить зависимость между несколькими случайными величинами.

Корреляционный анализ решает две основные задачи:

  • Первая задача заключается в определении формы связи, т.е. в установлении математической формы, в которой выражается данная связь. Это очень важно, так как от правильного выбора формы связи зависит конечный результат изучения взаимосвязи между признаками.
  • Вторая задача состоит в измерении тесноты, т.е. меры связи между признаками с целью установить степень влияния данного фактора на результат. Она решается математически путем определения параметров корреляционного уравнения.

Затем проводятся оценка и анализ полученных результатов при помощи специальных показателей корреляционного метода (коэффициентов детерминации, линейной и множественной корреляции и т.д.), а также проверка существенности связи между изучаемыми признаками.

Методами корреляционного анализа решаются следующие задачи:

  1. Взаимосвязь. Есть ли взаимосвязь между параметрами?
  2. Прогнозирование. Если известно поведение одного параметра, то можно предсказать поведение другого параметра, коррелирующего с первым.
  3. Классификация и идентификация объектов. Корреляционный анализ помогает подобрать набор независимых признаков для классификации.

Корреляция - статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). Суть ее заключается в том, что при изменении значения одной переменной происходит закономерное изменение (уменьшению или увеличению) другой переменной.

Для определения наличия взаимосвязи между двумя свойствами используется коэффициент корреляции.

Коэффициент корреляции р для генеральной совокупности, как правило, неизвестен, поэтому он оценивается по экспериментальным данным, представляющим собой выборку объема n пар значений (x i , y i), полученную при совместном измерении двух признаков Х и Y. Коэффициент корреляции, определяемый по выборочным данным, называется выборочным коэффициентом корреляции (или просто коэффициентом корреляции). Его принято обозначать символом r.

К основным свойствам коэффициента корреляции относятся:

  1. Коэффициенты корреляции способны характеризовать только линейные связи, т.е. такие, которые выражаются уравнением линейной функции. При наличии нелинейной зависимости между варьирующими признаками следует использовать другие показатели связи.
  2. Значения коэффициентов корреляции – это отвлеченные числа, лежащее в пределах от -1 до +1, т.е. -1 < r < 1.
  3. При независимом варьировании признаков, когда связь между ними отсутствует, r = 0 .
  4. При положительной, или прямой, связи, когда с увеличением значений одного признака возрастают значения другого, коэффициент корреляции приобретает положительный (+) знак и находится в пределах от 0 до +1, т.е. 0 < r < 1.
  5. При отрицательной, или обратной, связи, когда с увеличением значений одного признака соответственно уменьшаются значения другого, коэффициент корреляции сопровождается отрицательным (–) знаком и находится в пределах от 0 до –1, т.е. -1 < r <0.
  6. Чем сильнее связь между признаками, тем ближе величина коэффициента корреляции к ô1ô. Если r = ± 1, то корреляционная связь переходит в функциональную, т.е. каждому значению признака Х будет соответствовать одно или несколько строго определенных значений признака Y.
  7. Только по величине коэффициентов корреляции нельзя судить о достоверности корреляционной связи между признаками. Этот параметр зависит от числа степеней свободы k = n –2, где: n – число коррелируемых пар показателей Х и Y. Чем больше n, тем выше достоверность связи при одном и том же значении коэффициента корреляции.

Рассчитывается коэффициент корреляции по следующей формуле:

где x - значение факторного признака; y - значение результативного признака; n - число пар данных.

Корреляция изучается на основании экспериментальных данных, представляющих собой измеренные значения x i ,y i двух признаков x,y. Если экспериментальных данных сравнительно немного, то двумерное эмпирическое распределение представляется в виде двойного ряда значений x i ,y i . При этом корреляционную зависимость между признаками можно описывать разными способами. Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т. д.

Когда исследуется корреляция между количественными признаками, значения которых можно точно измерить в единицах метрических шкал, то очень часто принимается модель двумерной нормально распределенной генеральной совокупности. Такая модель отображает зависимость между переменными величинами x и y графически в виде геометрического места точек в системе прямоугольных координат. Эта графическая зависимость называется диаграммой рассеивания или корреляционным полем.

Данная модель двумерного нормального распределения (корреляционное поле) позволяет дать наглядную графическую интерпретацию коэффициента корреляции, т.к. распределение в совокупности зависит от пяти параметров:

  • математических ожиданий E[x], E[y] величин x,y;
  • стандартных отклонений px, py случайных величин x,y ;
  • коэффициента корреляции p , который является мерой связи между случайными величинами, х и у. Приведем примеры корреляционных полей.

Если р = 0, то значения x i ,y i , полученные из двумерной нормальной совокупности, располагаются на графике в пределах области, ограниченной окружностью. В этом случае между случайными величинами x и y отсутствует корреляция, и они называются некоррелированными. Для двумерного нормального распределения некоррелированность означает одновременно и независимость случайных величин x и y.

Если р = 1 или р = -1, то говорят о полной корреляции, то есть между случайными величинами x и y существует линейная функциональная зависимость.

При р = 1 значения x i ,y i определяют точки, лежащие на прямой линии, имеющей положительный наклон (с увеличением x i значения y i также увеличиваются).

В промежуточных случаях, когда -1< p <1, определяемые значениями x i ,y i точки попадают в область, ограниченную некоторым эллипсом, причём при p>0 имеет место положительная корреляция (с увеличением x значения y в целом имеют тенденцию к возрастанию), при p<0 корреляция отрицательная. Чем ближе p к ±1, тем уже эллипс и тем теснее точки, определяемые экспериментальными значениями, группируются около прямой линии.

Здесь же следует обратить внимание на то, что линия, вдоль которой группируются точки, может быть не только прямой, а иметь любую другую форму: парабола, гипербола и т. д. В этих случаях рассматривают нелинейную корреляцию.

Корреляционную зависимость между признаками можно описывать разными способами, в частности, любая форма связи может быть выражена уравнением общего вида y=f(x), где признак y – зависимая переменная, или функция от независимой переменной x, называемой аргументом.

Таким образом, визуальный анализ корреляционного поля помогает определить не только наличие статистической связи (линейной или нелинейной) между исследуемыми признаками, но и ее тесноту и форму.

При изучении корреляционной связи важным направлением анализа является оценка степени тесноты связи. Понятие степени тесноты связи между двумя признаками возникает вследствие того, что в действительности на изменение результативного признака влияет множество факторов. При этом влияние одного из факторов может выражаться более заметно и четко, чем влияние других факторов. С изменением условий роль решающего фактора может перейти к другому признаку.

При статистическом изучении взаимосвязей, как правило, учитываются только основные факторы. Также с учетом степени тесноты связи оценивается необходимость более подробного изучения конкретной данной связи и значение практического ее использования.

В общем, знание количественной оценки тесноты корреляционной связи позволяет решить следующую группу вопросов:

  • необходимость глубокого изучения данной связи между признаками и целесообразность ее практического применения;
  • степень различий в проявлении связи в конкретных условиях (сопоставление оценки тесноты связи для различных условий);
  • выявление главных и второстепенных факторов в данных конкретных условиях путём последовательного рассмотрения и сравнения признака с различными факторами.

Показатели тесноты связи должны удовлетворять ряду основных требований:

  • величина показателя тесноты связи должна быть равна или близка к нулю, если связь между изучаемыми признаками (процессами, явлениями) отсутствует;
  • при наличии между изучаемыми признаками функциональной связи величина показателя тесноты связи должна быть равна единице;
  • при наличии между признаками корреляционной связи абсолютное значение показателя тесноты связи должно выражаться правильной дробью, которая по величине тем больше, чем теснее связь между изучаемыми признаками (стремится к единице).

Корреляционная зависимость определяется различными параметрами, среди которых наибольшее распространение получили парные показатели, характеризующие взаимосвязь двух случайных величин: коэффициент ковариации (корреляционный момент) и линейный коэффициент корреляции (коэффициент корреляции Пирсона).

Сила связи определяется абсолютным значением показателя тесноты связи и не зависит от направления связи.

В зависимости от абсолютного значения коэффициента корреляции p корреляционные связи между признаками по силе делятся следующим образом:

  • сильная, или тесная (при p >0,70);
  • средняя (при 0,50< p <0,69);
  • умеренная (при 0,30< p <0,49);
  • слабая (при 0,20< p <0,29);
  • очень слабая (при p <0,19).

По форме корреляционная связь может быть линейной или нелинейной.

Линейной может быть, например, связь между уровнем подготовки студента и оценками итоговой аттестации. Пример нелинейной связи - уровень мотивации и эффективность выполнения поставленной задачи. (При повышении мотивации эффективность выполнения задачи сначала возрастает, затем, при определённом уровне мотивации, достигается максимальная эффективность; но дальнейшему повышению мотивации сопутствует уже снижение эффективности.)

По направлению корреляционная связь может быть положительной (прямой) и отрицательной (обратной).

При положительной линейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значениям одного признака - более низкие значения другого. При отрицательной корреляции соотношения обратные.

Знак коэффициента корреляции зависит от направления корреляционной связи: при положительной корреляции коэффициент корреляции имеет положительный знак, при отрицательной корреляции - отрицательный знак.

Список литературы

  1. Аблеева, А. М. Формирование фонда оценочных средств в условиях ФГОС [Текст] / А. М. Аблеева, Г. А. Салимова // Актуальные проблемы преподавания социально-гуманитарных, естественно - научных и технических дисциплин в условиях модернизации высшей школы: материалы международной научно-методической конференции, 4-5 апреля 2014 г. / Башкирский ГАУ, Факультет информационных технологий и управления. - Уфа, 2014. - С. 11-14.
  2. Ганиева, А.М. Статистический анализ занятости и безработицы [Текст] / А.М. Ганиева, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры "Статистики и информационных систем в экономике" / Башкирский ГАУ. - Уфа, 2011. - С. 315-316.
  3. Исмагилов, Р. Р. Творческая группа - эффективная форма организации научных исследований в высшей школе [Текст] / Р. Р. Исмагилов, М. Х. Уразлин, Д. Р. Исламгулов // Научно-технический и научно-образовательный комплексы региона: проблемы и перспективы развития: материалы научно-практической конференции / Академия наук РБ, УГАТУ. - Уфа, 1999. - С. 105-106.
  4. Исламгулов, Д.Р. Компетентностный подход в обучении: оценка качества образования [Текст] / Д.Р. Исламгулов, Т.Н. Лубова, И.Р. Исламгулова // Современный научный вестник. – 2015. – Т. 7. - № 1. – С. 62-69.
  5. Исламгулов, Д. Р. Научно-исследовательская работа студентов - важнейший элемент подготовки специалистов в аграрном вузе [Текст] / Д. Р. Исламгулов // Проблемы практической подготовки студентов в вузе на современном этапе и пути их решения: сб. материалов науч.-метод. конф., 24 апреля 2007 года / Башкирский ГАУ. - Уфа, 2007. - С. 20-22.
  6. Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта – компетентностный подход [Текст] / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова// БЪДЕЩИТЕ ИЗСЛЕДОВАНИЯ – 2016: Материали за XII Международна научна практична конференция, 15-22 февруари 2016. – София: Бял ГРАД-БГ ООД, 2016. – Том 4 Педагогически науки. – C. 80-85.
  7. Лубова, Т.Н. Новые образовательные стандарты: особенности реализации [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // Современный научный вестник. – 2015. – Т. 7. - № 1. – С. 79-84.
  8. Лубова, Т.Н. Организация самостоятельной работы обучающихся [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // Реализация образовательных программ высшего образования в рамках ФГОС ВО: материалы Всероссийской научно-методической конференции в рамках выездного совещания НМС по природообустройству и водопользованию Федерального УМО в системе ВО. / Башкирский ГАУ. - Уфа, 2016. - С. 214-219.
  9. Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта – компетентностный подход [Текст] / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова // Современный научный вестник. – 2015. – Т. 7. - № 1. – С. 85-93.
  10. Саубанова, Л.М. Уровень демографической нагрузки [Текст] / Л.М. Саубанова, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры "Статистики и информационных систем в экономике" / Башкирский ГАУ. - Уфа, 2011. - С. 321-322.
  11. Фахруллина, А.Р. Статистический анализ инфляции в России [Текст] / А.Р. Фахруллина, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры "Статистики и информационных систем в экономике" / Башкирский ГАУ. - Уфа, 2011. - С. 323-324.
  12. Фархутдинова, А.Т. Рынок труда в Республике Башкортостан в 2012 году [Электронный ресурс] / А.Т. Фархутдинова, Т.Н. Лубова // Студенческий научный форум. Материалы V Международной студенческой электронной научной конференции: электронная научная конференция (электронный сборник). Российская академия естествознания. 2013.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ТЕХНОЛОГИЙ И УПРАВЛЕНИЯ ИМЕНИ К.Г. РАЗУМОВСКОГО»

(ФГБОУ ВПО МГУТУ им К.Г. Разумовского)

Институт текстильной и легкой промышленности

Кафедра технологии кожи, меха и изделий из кожи


КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Методы и средства исследования»


Выполнила студентка

курса Страздина С.Ю.


Москва, 2013 г.

Задание 1.

Корреляционный анализ


Корреляционный анализ - это совокупность методов обнаружения так называемой корреляционной зависимости между случайными величинами.

Задачи корреляционного анализа сводятся к измерению тесноты известной связи между варьирующими признаками, определению неизвестных причинных связей (причинный характер которых должен быть выяснен с помощью теоретического анализа) и оценки факторов, оказывающих наибольшее влияние на результативный признак.

Этапы проведения корреляционного анализа

Многофакторный корреляционный анализ позволяет установить наличие, тесноту и форму связи между факторами и изучаемым показателем. Он состоит из нескольких этапов, деление на которые условно, так как отдельные стадии тесно связаны между собой.

На первом этапе определяются цели и задачи исследования и на основе качественного анализа подбираются факторы, которые предположительно влияют на изучаемый показатель.

При их подборе необходимо учитывать:

наличие причинно-следственных связей между показателями;

значимость факторов, то есть степень их влияния на результативный показатель;

возможность количественного измерения фактора.

На втором этапе осуществляется сбор и первичная обработка исходной информации.

Совокупность данных должна быть достаточно большой. Информация должна соответствовать закону нормального распределения, согласно которому основная масса наблюдений по каждому показателю должна быть сгруппирована около его среднего значения.

Исходные данные должны быть качественно и количественно однородны. Качественная однородность предполагает приблизительно одинаковые условия и специфику формирования факторных и результативного признаков. Количественная однородность заключается в отсутствии таких наблюдений, которые значительно (аномально) отличаются от основной массы данных.

Критерием однородности информации служит среднеквадратическое отклонение и коэффициент вариации, которые рассчитываются по каждому факторному и результативному показателю. Среднеквадратическое отклонение показывает абсолютное отклонение индивидуальных значений от среднеарифметической, а коэффициент вариации характеризует относительную меру отклонения отдельных значений от среднеарифметической. Причем, чем больше коэффициент вариации, тем относительно больший разброс данных в совокупности.

Изменчивость вариационного ряда принято считать:

незначительной, если вариация не превышает 10%;

средней, если вариация составляет 10-20%;

значительной, если она больше 20%, но не превышает 33%. Если вариация больше 33 %, то следует исключить из выборки нетипичные наблюдения.

На третьем этапе осуществляется моделирование связей между факторами и результативным признаком, т.е. решается вопрос о выборе формы связи.

На основе экономического и логического анализа природы и сущности изучаемого явления подбирается тип математического уравнения, которое наилучшим образом отражает характер изучаемых зависимостей.