Энергия связи протона в ядре. Энергия связи ядер

Более детально (2.3) записывается следующим образом:

называется дефектом массы ядра. На эту величину уменьшается масса всех нуклонов при образовании из них ядра.

Процесс полного расщепления ядра на составляющие его нуклоны является скорее гипотетическим. В действительности при делении ядер и других ядерных реакциях происходит распад ядра на два, реже более осколков. Знание энергии связи ядер позволяет рассчитать энергетический баланс не только для довольно редкого процесса полного расщепления, но и для любых процессов распада и взаимных превращений ядер. Например, энергия E p отделения протона, т.е. минимальная энергия, необходимая для выбивания протона из ядра Z X A равна разности энергий связи ядер Z X A и Z-1 X A-1:

Для выбивания из ядра α-частицы нужна энергия, равная:

Этот вариант формулы более удобен, так как в большинстве экспериментов измеряется масса атома, а не масса ядра. Поэтому в таблицах обычно приводятся значения масс нейтральных атомов.

Энергия связи любого ядра положительна; она должна составлять заметную часть его энергии покоя. Точные значения масс атомных ядер определяются с помощью специальных приборов, называемых масс-спектрометрами .

Энергия связи, отнесенная к массовому числу А называется удельной энергией связи нуклонов в ядре:

E уд = ΔE св / A = Δmc 2 / A.

Величина E уд показывает, какую энергию в среднем необходимо затратить, чтобы удалить из ядра один нуклон, не сообщая ему кинетической энергии. Величина E уд уд имеет своё значение для каждого ядра. Чем больше E уд , тем более устойчиво ядро. На рисунке 2.2 приведена зависимость E уд от массового числа A .

Видно, что E уд вырастает от 0 МэВ при А = 1 (протон) до 8.7 МэВ при A =50-60 (24 Cr - 30 Zn) и постепенно уменьшается до 7.5 МэВ для последнего встречающего в природе элемента (92 U). Для сравнения, энергия связи валентных электронов в атоме порядка 10 эВ , что в миллион раз меньше. Из рисунка 2.2 видно, что наибольшей удельной энергией связи обладают ядра с массовыми числами в диапазоне от 50 до 60. С уменьшением или возрастанием A удельная энергия связи уменьшается с разной интенсивностью, так как уменьшение удельной энергии происходит по разным механизмам.

Главные причины различия в энергии связи разных ядер заключается в следующем. Все нуклоны, из которых состоит ядро, можно условно разделить на две группы: поверхностные и внутренние.

Внутренние нуклоны окружены соседними нуклонами со всех сторон, поверхностные же имеют соседей только с внутренней стороны. Поэтому внутренние нуклоны взаимодействуют с остальными нуклонами сильнее, чем поверхностные. Но процент внутренних нуклонов особенно мал у легких ядер (у самых легких ядер все нуклоны можно считать поверхностными) и постепенно повышается по мере утяжеления. Поэтому и энергия связи растет вместе с ростом числа нуклонов в ядре. Однако этот рост не может продолжаться очень долго, так как начиная с некоторого достаточно большого число нуклонов (A = 50-60) количество протонов становится настолько большим (практически в любом ядре протоны составляют не менее 40% общего числа нуклонов), что делается заметным их взаимное электрическое отталкивание даже на фоне сильного ядерного притяжения. Это отталкивание и приводит к уменьшению энергии связи у тяжелых ядер.

Различие в энергии связи разных ядер может быть использовано для освобождения внутриядерной энергии . Энергетически выгодно:

  • деление тяжелых ядер на более легкие;
  • слияние легких ядер друг с другом в более тяжелые.

Как в первом, так и во втором случаях получаются более прочные (более устойчивые) ядра, чем исходные. При обоих процессах выделяется огромное количество энергии; эти процессы в настоящее время реализованы практически: реакции деления ядер и реакции термоядерного синтеза ядер (глава 4).

Проблема термоядерного синтеза решена наполовину: освоен взрывной синтез.

Среднее значение уд > равно 8 МэВ , причем для большинства ядер E уд ≈ уд > = 8 МэВ. Поэтому энергия связи атомных ядер в первом приближении может быть выражена через массовое число соотношением:

ΔE св ≈ ∙A ≈ 8 МэВ.

Это соотношение позволяет сделать два вывода относительно свойств ядерных сил, связывающих нуклоны в ядре.

Из пропорциональности ΔЕ св и A следует свойство насыщения ядерных сил, т.е. способность нуклона к взаимодействию не со всеми окружающими его нуклонами, а только с ограниченным их числом. Действительно, если бы каждый нуклон ядра взаимодействовал со всеми остальными (A - 1) нуклонами, то суммарная энергия связи была бы пропорциональна A ∙(A - 1) ≈ A 2 ,не A .

Энергия связи является мерой прочности ядра. Особенно велика энергия связи у 2 He 4 , 6 С 12 , 8 О 16 и других четно-четных ядер.

Ядра с полностью заполненными оболочками являются наиболее устойчивыми - магические ядра, у которых число протонов Z или нейтронов N равно одному из магических чисел: 2, 8, 20, 28, 50, 82, 26.

Ядра, у которых магическими являются и Z , и N , называются дважды магическими. Дважды магических ядер известно всего пять: 2 He 4 , 8 О 16 , 20 Ca 40 , ???, 82 Pb 208 .

В частности, особенная устойчивость ядра гелия проявляется в том, что это единственная частица, испускаемая тяжелыми ядрами при радиоактивном распаде (она называется α-частицей).

Из большой величины средней энергии связи уд > ≈ 8 МэВ следует чрезвычайно большая интенсивность ядерного взаимодействия. Так, например, средняя энергия связи нуклона в ядре 2 He 4 ( уд > ≈ 7 МэВ ) существенно больше кулоновского расталкивания двух протонов этого ядра. Это следовало ожидать: в противном случае протоны в ядре не могли бы быть связаны.

Нуклоны в ядрах находятся в состояниях, существенно отличающихся от их свободных состояний. За исключением ядра обычного водорода, во всех ядрах имеется не менее двух нуклонов, между которыми существует особое ядерное сильное взаимодействие – притяжение, обеспечивающее устойчивость ядер несмотря на отталкивание одноименно заряженных протонов.

· Энергией связи нуклона в ядре называется физическая величина, равная той работе, которую нужно совершить для удаления нуклона из ядра без сообщения ему кинетической энергии.

· Энергия связи ядра определяется величиной той работы , которую нужно совершить , чтобы расщепить ядро на составляющие его нуклоны без придания им кинетической энергии .

Из закона сохранения энергии следует, что при образовании ядра должна выделяться такая энергия, которую нужно затратить при расщеплении ядра на составляющие его нуклоны. Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергией в ядре.

При образовании ядра происходит уменьшение его массы: масса ядра меньше, чем сумма масс составляющих его нуклонов. Уменьшение массы ядра при его образовании объясняется выделением энергии связи. Если W св – величина энергии, выделяющейся при образовании ядра, то соответствующая ей масса

(9.2.1)

называется дефектом массы и характеризует уменьшение суммарной массы при образовании ядра из составляющих его нуклонов.

Если ядро массой М яд образовано из Z протонов с массой m p и из (A Z ) нейтронов с массой m n , то:

. (9.2.2)

Вместо массы ядра М яд величину ∆m можно выразить через атомную массу М ат:

, (9.2.3)

где m Н – масса водородного атома. При практическом вычислении ∆m массы всех частиц и атомов выражаются в атомных единицах массы (а.е.м.). Одной атомной единице массы соответствует атомная единица энергии (a.e.э.): 1 а.е.э. = 931,5016 МэВ.

Дефект массы служит мерой энергии связи ядра:

. (9.2.4)

Удельной энергией связи ядра ω св называется энергия связи , приходящаяся на один нуклон :

. (9.2.5)

Величина ω св составляет в среднем 8 МэВ/нуклон. На рис. 9.2 приведена кривая зависимости удельной энергии связи от массового числа A , характеризующая различную прочность связей нуклонов в ядрах разных химических элементов. Ядра элементов в средней части периодической системы (), т.е. от до , наиболее прочны.

В этих ядрах ω св близка к 8,7 МэВ/нуклон. По мере увеличения числа нуклонов в ядре удельная энергия связи убывает. Ядра атомов химических элементов, расположенных в конце периодической системы (например ядро урана), имеют ω св ≈ 7,6 МэВ/нуклон. Это объясняет возможность выделения энергии при делении тяжелых ядер. В области малых массовых чисел имеются острые «пики» удельной энергии связи. Максимумы характерны для ядер с четными числами протонов и нейтронов ( , , ), минимумы – для ядер с нечетными количествами протонов и нейтронов ( , , ).

Если ядро имеет наименьшую возможную энергию , то оно находится в основном энергетическом состоянии . Если ядро имеет энергию , то оно находится в возбужденном энергетическом состоянии . Случай соответствует расщеплению ядра на составляющие его нуклоны. В отличие от энергетических уровней атома, раздвинутых на единицы электронвольтов, энергетические уровни ядра отстоят друг от друга на мегаэлектронвольт (МэВ). Этим объясняется происхождение и свойства гамма-излучения.

Данные об энергии связи ядер и использование капельной модели ядра позволили установить некоторые закономерности строения атомных ядер.

Критерием устойчивости атомных ядер является соотношение между числом протонов и нейтронов в устойчивом ядре для данных изобаров (). Условие минимума энергии ядра приводит к следующему соотношению между Z уст и А :

. (9.2.6)

Берется целое число Z уст, ближайшее к тому, которое получается по этой формуле.

При малых и средних значениях А числа нейтронов и протонов в устойчивых ядрах примерно одинаковы: Z А Z .

С ростом Z силы кулоновского отталкивания протонов растут пропорционально Z ·(Z – 1) ~ Z 2 (парное взаимодействие протонов ), и для компенсации этого отталкивания ядерным притяжением число нейтронов должно возрастать быстрее числа протонов.

Для просмотра демонстраций щелкните по соответствующей гиперссылке:

Для того, чтобы атомные ядра были устойчивыми, протоны и нейтроны должны удерживаться внутри ядер огромными силами, во много раз превосходящими силы кулоновского отталкивания протонов. Силы, удерживающие нуклоны в ядре, называются ядерными . Они представляют собой проявление самого интенсивного из всех известных в физике видов взаимодействия – так называемого сильного взаимодействия. Ядерные силы примерно в 100 раз превосходят электростатические силы и на десятки порядков превосходят силы гравитационного взаимодействия нуклонов. Важной особенностью ядерных сил является их короткодействующий характер. Ядерные силы заметно проявляются, как показали опыты Резерфорда по рассеянию α-частиц, лишь на расстояниях порядка размеров ядра (10 –12 –10 –13 см). На больших расстояниях проявляется действие сравнительно медленно убывающих кулоновских сил.

На основании опытных данных можно заключить, что протоны и нейтроны в ядре в отношении сильного взаимодействия ведут себя одинаково, т. е. ядерные силы не зависят от наличия или отсутствия у частиц электрического заряда.

Важнейшую роль в ядерной физике играет понятие энергии связи ядра .

Энергия связи ядра равна минимальной энергии, которую необходимо затратить для полного расщепления ядра на отдельные частицы. Из закона сохранения энергии следует, что энергия связи равна той энергии, которая выделяется при образовании ядра из отдельных частиц.

Энергию связи любого ядра можно определить с помощью точного измерения его массы. В настоящее время физики научились измерять массы частиц – электронов, протонов, нейтронов, ядер и др. – с очень высокой точностью. Эти измерения показывают, что масса любого ядра M я всегда меньше суммы масс входящих в его состав протонов и нейтронов :

Эта энергия выделяется при образовании ядра в виде излучения γ-квантов.

В качестве примера рассчитаем энергию связи ядра гелия например, энергия ионизации равна 13,6 эВ.

В таблицах принято указывать удельную энергию связи , т. е. энергию связи на один нуклон. Для ядра гелия удельная энергия связи приблизительно равна 7,1 МэВ/нуклон. На рис. 6.6.1 приведен график зависимости удельной энергии связи от массового числа A . Как видно из графика, удельная энергия связи нуклонов у разных атомных ядер неодинакова. Для легких ядер удельная энергия связи сначала круто возрастает от 1,1 МэВ/нуклон у дейтерия до 7,1 МэВ/нуклон у гелия . Затем, претерпев ряд скачков, удельная энергия медленно возрастает до максимальной величины 8,7 МэВ/нуклон у элементов с массовым числом A = 50–60, а потом сравнительно медленно снижается у тяжелых элементов. Например, у урана она составляет 7,6 МэВ/нуклон.

Уменьшение удельной энергии связи при переходе к тяжелым элементам объясняется увеличением энергии кулоновского отталкивания протонов. В тяжелых ядрах связь между нуклонами ослабевает, а сами ядра становятся менее прочными.

В случае стабильных легких ядер, где роль кулоновского взаимодействия невелика, числа протонов и нейтронов Z и N оказываются одинаковыми (, , ). Под действием ядерных сил как бы образуются протон-нейтронные пары. Но у тяжелых ядер, содержащих большое число протонов, из-за возрастания энергии кулоновского отталкивания для обеспечения устойчивости требуются дополнительные нейтроны. На рис. 6.6.2 приведена диаграмма, показывающая число протонов и нейтронов в стабильных ядрах. У ядер, следующих за висмутом (Z > 83), из-за большого числа протонов полная стабильность оказывается вообще невозможной.

Из рис. 6.6.1 видно, что наиболее устойчивыми с энергетической точки зрения являются ядра элементов средней части системы Менделеева. Это означает, что существуют две возможности получения положительного энергетического выхода при ядерных превращениях:

1. деление тяжелых ядер на более легкие;

2. слияние легких ядер в более тяжелые.

В обоих этих процессах выделяется огромное количество энергии. В настоящее время оба процесса осуществлены практически: реакции деления и термоядерные реакции.

Выполним некоторые оценки. Пусть, например, ядро урана делится на два одинаковых ядра с массовыми числами 119. У этих ядер, как видно из рис. 6.6.1, удельная энергия связи порядка 8,5 МэВ/нуклон. Удельная энергия связи ядра урана 7,6 МэВ/нуклон. Следовательно, при делении ядра урана выделяется энергия, равная 0,9 МэВ/нуклон или более 200МэВ на один атом урана.

Рассмотрим теперь другой процесс. Пусть при некоторых условиях два ядра дейтерия сливаются в одно ядро гелия . Удельная энергия связи ядер дейтерия равна 1,1 МэВ/нуклон, а удельная энергия связи ядра гелия равна 7,1 МэВ/нуклон. Следовательно, при синтезе одного ядра гелия из двух ядер дейтерия выделится энергия, равная 6 МэВ/нуклон или 24 МэВ на атом гелия.

Следует обратить внимание на то, что синтез легких ядер по сравнению с делением тяжелых сопровождается примерно в 6 раз большим выделением энергии на один нуклон.

Энергия связи ядра
Binding energy

Энергия связи ядра – минимальная энергия, необходимая для того, чтобы разделить ядро на составляющие его нуклоны (протоны и нейтроны). Ядро – система связанных нуклонов, состоящая из Z протонов (масса протона в свободном состоянии m p) и N нейтронов (масса нейтрона в свободном состоянии m n). Для того, чтобы разделить ядро на составные нуклоны, нужно затратить определенную минимальную энергию W, называемую энергией связи. При этом покоящееся ядро с массой М переходит в совокупность свободных покоящихся протонов и нейтронов с суммарной массой Zm p + Nm n . Энергия покоящегося ядра Мс 2 . Энергия освобождённых покоящихся нуклонов (Zm p + Nm n)с 2 . В соответствии с законом сохранения энергии Мс 2 + W = (Zm p + Nm n)с 2 . Или W = (Zm p + Nm n)с 2 - Мс 2 . Поскольку W > 0, то М < (Zm p + Nm n), т.е. масса, начального ядра, в котором нуклоны связаны, меньше суммы масс свободных нуклонов, входящих в его состав.
W растёт с увеличением числа А нуклонов в ядре (А = Z + N). Удобно иметь дело с удельной энергией связи ε = W/A, т.е. средней энергией связи, приходящейся на один нуклон. Для большинства ядер ε ≈ 8 МэВ (1 МэВ = 1.6·10 -13 Дж). Для разрыва химической связи нужна энергия в 10 6 раз меньше.

Энергия связи

энергия связанной системы каких-либо частиц (например, атома), равная работе, которую необходимо затратить, чтобы разложить эту систему на бесконечно удаленные друг от друга и не взаимодействующие между собой составляющие ее частицы. Является отрицательной величиной, т. к. при образовании связанного состояния энергия выделяется; ее абсолютная величина характеризует прочность связи (например, устойчивость ядер). Согласно соотношению Эйнштейна, Э. с. эквивалентна дефекту масс (См. Дефект масс) Δm : ΔЕ = Δmc2 (с - скорость света в вакууме). Значение Э. с. определяется типом взаимодействия частиц в данной системе. Так, Э. с. ядра обусловлена сильными взаимодействиями (См. Сильные взаимодействия) нуклонов в ядре (у наиболее устойчивых ядер промежуточных атомов она Энергия связи8 10 6 эв на 1 нуклон - удельная Э. с.). Она может выделяться при слиянии легких ядер в более тяжелые (см. Термоядерные реакции), а также при делении тяжелых ядер, что объясняется уменьшением удельной Э. с. (см. Ядерные реакции) с ростом атомного номера.

Э. с. электронов в атоме или молекуле определяется электромагнитными взаимодействиями (См. Электромагнитные взаимодействия) и пропорциональна для каждого электрона ионизационному потенциалу (См. Ионизационный потенциал), для электрона атома и в нормальном состоянии она равна 13,6 эв. Этими же взаимодействиями обусловлена

Э. с. атомов в молекуле и кристалле (см. Химическая связь). Э. с. при гравитационном взаимодействии обычно мала, но для некоторых космических объектов ее величина может быть значительной (см., например, «Черная дыра» (См. Чёрная дыра)).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .