Все формулы импульса по физике. Referat

ЗАКОНЫ СОХРАНЕНИЯ ИМПУЛЬСА И МОМЕНТА

ИМПУЛЬСА

Учебная цель: добиться понимания физической сущности законов сохранения импульса и момент импульса. Привить навыки самостоятельного решения задач с применением этих законов.

Литература

Основная: Детлаф А. А., Яворский Б.М. Курс физики. – М.: Высшая школа, 1989.– Гл.5, § 5.1 – 5.3.

Дополнительная: Савельев И.В. Курс общей физики. – М.: Наука, 1987. – Т.1, гл.3, § 27 – 29.

Контрольные вопросы для подготовки к занятию

1. Что называется импульсом тела? Импульсом силы? Их единицы измерения.

2. Cформулируйте определение замкнутой системы тел.

3. Сформулируйте и запишите закон сохранения импульса для системы тел?

4. Что называется коэффициентом восстановления? От чего он зависит?

5. Что называется ударом, упругим ударом, неупругим ударом?

6. Что называется моментом импульса? Единица измерения в СИ.

7. Сформулируйте и запишите закон сохранения момента импульса для системы тел и одного тела. Для каких систем он справедлив?

Краткие теоретические сведения и основные формулы

Импульсом тела называется физическая векторная величина, равная произведению массы тела на его скорость и имеющая направление скорости

Импульс – это мера механического движения тела с заданной массой.

Для изменения импульса тела необходимо, чтобы на него подействовала сила. Изменение импульса будет зависеть не только от величины силы, но также и от времени её действия.

Импульсом силы называется векторная физическая величина равная произведению силы и времени её действия, т.е.
.

Понятием импульса силы широко пользуются при решении задач о движении нескольких взаимодействующих тел.

Мысленно выделенная совокупность материальных точек (тел), движущихся согласно законам классической механики и взаимодействующих друг с другом и с телами, не включёнными в состав этой совокупности, называется механической системой. Силы взаимодействия между телами механической системы называются внутренними. Силы, с которыми взаимодействуют тела, не входящие в систему, называются внешними.

Механическая система тел, на которую не действуют внешние силы
называется замкнутой, или изолированной. В изолированной системе геометрическая сумма импульсов входящих в неё тел, остаётся постоянной, то есть

Закон сохранения импульса нашёл широкое применение при ударе тел.

Ударом называется кратковременное взаимодействие тел, возникающее в результате их столкновения.

При соударении тел друг с другом они претерпевают деформацию. При этом кинетическая энергия, которой обладали тела перед ударом, частично или полностью переходит в потенциальную энергию упругой деформации и в так называемую внутреннюю энергию тел.

Для учёта потерь энергии вводится коэффициент восстановления, который зависит только от физических свойств материала тел. Он определяется отношением нормальной составляющей (по отношению к поверхности соударения) относительной скорости после удара
к её величине до удара
(рис.4.1):

Удар называется абсолютно упругим, если после удара возникшие в телах деформации полностью исчезают (кинетическая энергия тела до и после удара остаётся неизменной, k = 1).

Удар называется абсолютно неупругим, если после удара возникшие в телах деформации полностью сохраняются (k = 0). После абсолютно неупругого удара тела движутся с общей скоростью.

При неупругом центральном ударе двух тел с массами и общая скорость движение этих тел после удара может быть определена из закона сохранения импульса:

где - скорость первого тела до удара; - скорость второго тела до удара.

Часть кинетической энергии тел до удара пойдёт на работу деформации

При упругом центральном ударе тела после удара будут двигаться с различными скоростями. Скорость первого тела после удара

Скорость второго тела после удара

При решении задач механики в незамкнутых системах применить закон сохранения импульса можно, если:

а) внешние силы действуют, но результирующая этих сил равна нулю;

б) проекция суммы всех внешних сил на какое-то направление равна нулю, следовательно, проекция импульса на это направление сохраняется, хотя сам вектор импульса не остаётся постоянным.

Моментом импульса тела относительно неподвижной оси называется векторная физическая величина, равная произведению момента инерции тела относительно той же оси на угловую скорость тела:


Момент импульса системы тел есть векторная сумма моментов импульсов всех тел системы

Закон сохранения момента импульса: есть результирующий момент внешних сил, приложенных к системе, равен нулю
, то момент импульса системы есть величина постоянная, то есть

Для двух тел:

где J 1 , J 2 , , – момент инерции и угловые скорости тел до взаимодействия;
- те же величины после взаимодействия.

Для одного тела, момент инерции которого может меняться:

где J 1 и J 2 – начальное и конечное значение момента инерции; и – начальная конечная угловые скорости тела.

В задачах по общему курсу физики обычно рассматривают вращение твердого тела лишь вокруг неподвижной оси или оси, перемещающейся в пространстве параллельно самой себе. В этом случае физические величины, характеризующие вращательное движение тела
направлены вдоль оси вращения. Это позволяет упростить запись уравнений вращательного движения тела. Выбрав ось вращения за ось проекций, все уравнения можно записать в скалярной форме. При этом знаки величин, , М , L определяют следующим образом. Некоторое направление вращения (по часовой стрелке или против неё) выбирают за положительное. Величины , L , М берутся со знаком плюс, если их направление соответствует выбранному положительному направлению, в противном случае – со знаком минус. Знак величины всегда совпадает со знаком М .

При ускоренном вращении тела знаки всех четырёх величин совпадают; при замедленном движении две пары величин - , L и М , - имеют противоположные знаки.

Сопоставление основных величин и уравнений, определяющих вращательное движение тела вокруг неподвижной оси и его поступательное движение, подчёркивающее их аналогию, приведено в таб. 4.1.

Т а б л и ц а 4.1

Поступательное движение

Вращательное движение

Равнодействующая внешних сил

Основное уравнение динамики

Суммарный момент внешних сил – М

Основное уравнение динамики:

В повседневной жизни для того, чтобы охарактеризовать человека, совершающего спонтанные поступки, иногда используют эпитет «импульсивный». При этом некоторые люди даже не помнят, а значительная часть и вовсе не знает, с какой физической величиной связано это слово. Что скрывается под понятием «импульс тела» и какими свойствами он обладает? Ответы на эти вопросы искали такие великие ученые, как Рене Декарт и Исаак Ньютон.

Как и всякая наука, физика оперирует четко сформулированными понятиями. На данный момент принято следующее определение для величины, носящей название импульса тела: это векторная величина, которая является мерой (количеством) механического движения тела.

Предположим, что вопрос рассматривается в рамках классической механики, т. е. считается, что тело движется с обычной, а не с релятивистской скоростью, а значит, она хотя бы на порядок меньше скорости света в вакууме. Тогда модуль импульса тела рассчитывается по формуле 1 (см. фото ниже).

Таким образом, по определению, эта величина равна произведению массы тела на его скорость, с которой сонаправлен ее вектор.

В качестве единицы измерения импульса в СИ (Международной системе единиц) принимается 1 кг/м/с.

Откуда появился термин «импульс»

За несколько веков до того, как в физике появилось понятие количества механического движения тела, считалось, что причиной любого перемещения в пространстве является особая сила — импетус.

В 14 веке в это понятие внес коррективы Жан Буридан. Он предположил, что летящий булыжник обладает импетусом, прямо пропорциональным скорости, который был бы неизменным, если бы отсутствовало сопротивления воздуха. В то же время, по мнению этого философа, тела с большим весом обладали способностью «вмещать» больше такой движущей силы.

Дальнейшее развитие понятию, позднее названного импульсом, дал Рене Декарт, который обозначил его словами «количество движения». Однако он не учитывал, что скорость имеет направление. Именно поэтому выдвинутая им теория в некоторых случаях противоречила опыту и не нашла признания.

О том, что количество движения должно иметь еще и направление, первым догадался английский ученый Джон Валлис. Произошло это в 1668 году. Однако понадобилась еще пара лет, чтобы он сформулировал известный закон сохранения количества движения. Теоретическое доказательство этого факта, установленного эмпирическим путем, было дано Исааком Ньютоном, который использовал открытые им же третий и второй законы классической механики, названные его именем.

Импульс системы материальных точек

Рассмотрим сначала случай, когда речь идет о скоростях, намного меньших, чем скорость света. Тогда, согласно законам классической механики, полный импульс системы материальных точек представляет векторную величину. Он равен сумме произведений их масс на скорости (см. формулу 2 на картинке выше).

При этом за импульс одной материальной точки принимают векторную величину (формула 3), которая сонаправлена со скоростью частицы.

Если речь идет о теле конечного размера, то сначала его мысленно разбивают на малые части. Таким образом, снова рассматривается система материальных точек, однако ее импульс рассчитывают не обычным суммированием, а путем интегрирования (см. формулу 4).

Как видим, временная зависимость отсутствует, поэтому импульс системы, на которую не воздействуют внешние силы (или их влияние взаимно компенсировано), остается неизменным во времени.

Доказательство закона сохранения

Продолжим рассматривать тело конечного размера как систему материальных точек. Для каждой из них Второй закон Ньютона формулируется согласно формуле 5.

Обратим внимание на то, что система замкнутая. Тогда, суммируя по всем точкам и применяя Третий закон Ньютона, получаем выражение 6.

Таким образом, импульс замкнутой системы является постоянной величиной.

Закон сохранения справедлив и в тех случаях, когда полная сумма сил, которые действуют на на систему извне, равна нулю. Отсюда следует одно важное частное утверждение. Оно гласит, что импульс тела является постоянной величиной, если воздействие извне отсутствует или влияние нескольких сил скомпенсировано. Например, в отсутствие трения после удара клюшкой шайба должна сохранять свой импульс. Такая ситуация будет наблюдаться даже невзирая на то, что на это тело действуют сила тяжести и реакции опоры (льда), так как они, хотя и равны по модулю, однако направлены в противоположные стороны, т. е. компенсируют друг друга.

Свойства

Импульс тела или материальной точки является аддитивной величиной. Что это значит? Все просто: импульс механической системы материальных точек складывается из импульсов всех входящих в систему материальных точек.

Второе свойство этой величины заключается в том, что она остается неизменной при взаимодействиях, которые изменяют лишь механические характеристики системы.

Кроме того, импульс инвариантен по отношению к любому повороту системы отсчета.

Релятивистский случай

Предположим, что речь идет о невзаимодействующих материальных точках, имеющих скорости порядка 10 в 8-й степени или чуть меньше в системе СИ. Трехмерный импульс рассчитывается по формуле 7, где под с понимают скорость света вакууме.

В случае, когда она замкнутая, верен закон сохранения количества движения. В то же время трехмерный импульс не является релятивистски инвариантной величиной, так как присутствует его зависимость от системы отсчета. Есть также четырехмерный вариант. Для одной материальной точки его определяют по формуле 8.

Импульс и энергия

Эти величины, а также масса тесно связаны друг с другом. В практических задачах обычно применяются соотношения (9) и (10).

Определение через волны де Бройля

В 1924 году была высказана гипотеза о том, что корпускулярно-волновым дуализмом обладают не только фотоны, но и любые другие частицы (протоны, электроны, атомы). Ее автором стал французский ученый Луи де Бройль. Если перевести эту гипотезу на язык математики, то можно утверждать, что с любой частицей, имеющей энергию и импульс, связана волна с частотой и длиной, выражаемыми формулами 11 и 12 соответственно (h — постоянная Планка).

Из последнего соотношения получаем, что модуль импульса и длина волны, обозначаемая буквой «лямбда», обратно пропорциональны друг другу (13).

Если рассматривается частица со сравнительно невысокой энергией, которая движется со скоростью, несоизмеримой со скоростью света, то модуль импульса вычисляется так же, как в классической механике (см. формулу 1). Следовательно, длина волны рассчитывается согласно выражению 14. Иными словами, она обратно пропорциональна произведению массы и скорости частицы, т. е. ее импульсу.

Теперь вы знаете, что импульс тела — это мера механического движения, и познакомились с его свойствами. Среди них в практическом плане особенно важен Закон сохранения. Даже люди, далекие от физики, наблюдают его в повседневной жизни. Например, всем известно, что огнестрельное оружие и артиллерийские орудия дают отдачу при стрельбе. Закон сохранения импульса наглядно демонстрирует и игра в бильярд. С его помощью можно предсказать направления разлета шаров после удара.

Закон нашел применение при расчетах, необходимых для изучения последствий возможных взрывов, в области создания реактивных аппаратов, при проектировании огнестрельного оружия и во многих других сферах жизни.

Изучив законы Ньютона, мы видим, что с их помощью можно решить основные задачи механики, если нам известны все силы, действующие на тело. Есть ситуации, в которых определить эти величины затруднительно или вообще невозможно. Рассмотрим несколько таких ситуаций. При столкновении двух биллиардных шаров или автомобилей мы можем утверждать о действующих силах, что это их природа, здесь действуют силы упругости. Однако ни их модулей, ни их направлений мы точно установить не сможем, тем более что эти силы имеют крайне малое время действия. При движении ракет и реактивных самолетов мы также мало что можем сказать о силах, приводящих указанные тела в движение. В таких случаях применяются методы, позволяющие уйти от решения уравнений движения, а сразу воспользоваться следствиями этих уравнений. При этом вводятся новые физические величины. Рассмотрим одну из этих величин, называемую импульсом тела

Стрела, выпускаемая из лука. Чем дольше продолжается контакт тетивы со стрелой (∆t), тем больше изменение импульса стрелы (∆), а следовательно, тем выше ее конечная скорость.

Два сталкивающихся шарика. Пока шарики находятся в контакте, они действуют друг на друга с равными по модулю силами, как учит нас третий закон Ньютона. Значит, изменения их импульсов также должны быть равны по модулю, даже если массы шариков не равны.

Проанализировав формулы, можно сделать два важных вывода:

1. Одинаковые силы, действующие в течение одинакового промежутка времени, вызывают одинаковые изменения импульса у различных тел, независимо от массы последних.

2. Одного и того же изменения импульса тела можно добиться, либо действуя небольшой силой в течение длительного промежутка времени, либо действуя кратковременно большой силой на то же самое тело.

Согласно второму закону Ньютона, можем записать:

∆t = ∆ = ∆ / ∆t

Отношение изменения импульса тела к промежутку времени, в течение которого это изменение произошло, равно сумме сил, действующих на тело.

Проанализировав это уравнение, мы видим, что второй закон Ньютона позволяет расширить класс решаемых задач и включить задачи, в которых масса тел изменяется с течением времени.

Если же попытаться решить задачи с переменной массой тел при помощи обычной формулировки второго закона Ньютона:

то попытка такого решения привела бы к ошибке.

Примером тому могут служить уже упоминаемые реактивный самолет или космическая ракета, которые при движении сжигают топливо, и продукты этого сжигаемого выбрасывают в окружающее пространство. Естественно, масса самолета или ракеты уменьшается по мере расхода топлива.

Несмотря на то что второй закон Ньютона в виде «равнодействующая сила равна произведению массы тела на его ускорение» позволяет решить довольно широкий класс задач, существуют случаи движения тел, которые не могут быть полностью описаны этим уравнением. В таких случаях необходимо применять другую формулировку второго закона, связывающую изменение импульса тела с импульсом равнодействующей силы. Кроме того, существует ряд задач, в которых решение уравнений движения является математически крайне затруднительным либо вообще невозможным. В таких случаях нам полезно использовать понятие импульса.

С помощью закона сохранения импульса и взаимосвязи импульса силы и импульса тела мы можем вывести второй и третий закон Ньютона.

Второй закон Ньютона выводится из соотношения импульса силы и импульса тела.

Импульс силы равен изменению импульса тела:

Произведя соответствующие переносы, мы получим зависимость силы от ускорения, ведь ускорение определяется как отношение изменения скорости ко времени, в течение которого это изменение произошло:

Подставив значения в нашу формулу, получим формулу второго закона Ньютона:

Для выведения третьего закона Ньютона нам понадобится закон сохранения импульса.

Векторы подчеркивают векторность скорости, то есть то, что скорость может изменяться по направлению. После преобразований получим:

Так как промежуток времени в замкнутой системе был величиной постоянной для обоих тел, мы можем записать:

Мы получили третий закон Ньютона: два тела взаимодействуют друг с другом с силами, равными по величине и противоположными по направлению. Векторы этих сил направлены навстречу друг к другу, соответственно, модули этих сил равны по своему значению.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.

Домашнее задание

  1. Дать определение импульсу тела, импульсу силы.
  2. Как связаны импульс тела с импульсом силы?
  3. Какие выводы можно сделать по формулам импульса тела и импульса силы?
  1. Интернет-портал Questions-physics.ru ().
  2. Интернет-портал Frutmrut.ru ().
  3. Интернет-портал Fizmat.by ().

1. Как вам известно, результат действия силы зависит от ее модуля, точки приложения и направления. Действительно, чем больше сила, действующая на тело, тем большее ускорение оно приобретает. От направления силы зависит и направление ускорения. Так, приложив небольшую силу к ручке, мы легко открываем дверь, если ту же силу приложить около петель, на которых висит дверь, то ее можно и не открыть.

Опыты и наблюдения свидетельствуют о том, что результат действия силы (взаимодействия) зависит не только от модуля силы, но и от времени ее действия. Проделаем опыт. К штативу на нити подвесим груз, к которому снизу привязана еще одна нить (рис. 59). Если за нижнюю нить резко дернуть, то она оборвется, а груз останется висеть на верхней нити. Если же теперь медленно потянуть за нижнюю нить, то оборвется верхняя нить.

Импульсом силы называют векторную физическую величину, равную произведению силы на время ее действия Ft .

Единица импульса силы в СИ - ньютон‑секунда (1 Н с ): [Ft ] = 1 Н с.

Вектор импульса силы совпадает по направлению с вектором силы.

2. Вы также знаете, что результат действия силы зависит от массы тела, на которое эта сила действует. Так, чем больше масса тела, тем меньшее ускорение оно приобретает при действии одной и той же силы.

Рассмотрим пример. Представим себе, что на рельсах стоит груженая платформа. С ней сталкивается движущийся с некоторой скоростью вагон. В результате столкновения платформа приобретет ускорение и переместится на некоторое расстояние. Если же движущийся с той же скоростью вагон столкнется с легкой вагонеткой, то она в результате взаимодействия переместится на существенно большее расстояние, чем груженая платформа.

Другой пример. Предположим, что к мишени подлетает пуля со скоростью 2 м/ с. Пуля, вероятнее всего, отскочит от мишени, оставив на ней лишь небольшую вмятину. Если же пуля будет лететь со скоростью 100 м/с, то она пробьет мишень.

Таким образом, результат взаимодействия тел зависит от их массы и скорости движения.

Импульсом тела называют векторную физическую величину, равную произведению массы тела и его скорости.

p = m v .

Единица импульса тела в СИ - килограмм-метр в секунду (1 кг м/с): [p ] = [m ][v ] = 1 кг 1м/ с = 1 кг м/с.

Направление импульса тела совпадает с направлением его скорости.

Импульс - величина относительная, его значение зависит от выбора системы отсчета. Это и понятно, поскольку относительной величиной является скорость.

3. Выясним, как связаны импульс силы и импульс тела.

По второму закону Ньютона:

F = ma .

Подставив в эту формулу выражение для ускорения a = , получим:

F = , или
Ft = mv mv 0 .

В левой части равенства стоит импульс силы; в правой части равенства - разность конечного и начального импульсов тела,т. е. изменение импульса тела.

Таким образом,

импульс силы равен изменению импульса тела.

Ft = D(m v ).

Это иная формулировка второго закона Ньютона. Именно так сформулировал его Ньютон.

4. Предположим, что сталкиваются два шарика движущиеся по столу. Любые взаимодействующие тела, в данном случае шарики, образуют систему . Между телами системы действуют силы: сила действия F 1 и сила противодействия F 2 . При этом сила действия F 1 по третьему закону Ньютона равна силе противодействия F 2 и направлена противоположно ей: F 1 = –F 2 .

Силы, с которыми тела системы взаимодействуют между собой, называют внутренними силами.

Помимо внутренних сил, на тела системы действуют внешние силы. Так, взаимодействующие шарики притягиваются к Земле, на них действует сила реакции опоры. Эти силы являются в данном случае внешними силами. Во время движения на шарики действуют сила сопротивления воздуха и сила трения. Они тоже являются внешними силами по отношению к системе, которая в данном случае состоит из двух шариков.

Внешними силами называют силы, которые действуют на тела системы со стороны других тел.

Будем рассматривать такую систему тел, на которую не действуют внешние силы.

Замкнутой системой называют систему тел, взаимодействующих между собой и не взаимодействующих с другими телами.

В замкнутой системе действуют только внутренние силы.

5. Рассмотрим взаимодействие двух тел, составляющих замкнутую систему. Масса первого тела m 1 , его скорость до взаимодействия v 01 , после взаимодействия v 1 . Масса второго тела m 2 , его скорость до взаимодействия v 02 , после взаимодействия v 2 .

Силы, с которыми взаимодействуют тела, по третьему закону:F 1 = –F 2 . Время действия сил одно и то же, поэтому

F 1 t = –F 2 t .

Для каждого тела запишем второй закон Ньютона:

F 1 t = m 1 v 1 – m 1 v 01 , F 2 t = m 2 v 2 – m 2 v 02 .

Поскольку левые части равенств равны, то равны и их правые части, т. е.

m 1 v 1 m 1 v 01 = –(m 2 v 2 – m 2 v 02).

Преобразовав это равенство, получим:

m 1 v 01 + m 1 v 02 = m 2 v 1 + m 2 v 2 .

В левой части равенства стоит сумма импульсов тел до взаимодействия, в правой - сумма импульсов тел после взаимодействия. Как видно из этого равенства, импульс каждого тела при взаимодействии изменился, а сумма импульсов осталась неизменной.

Геометрическая сумма импульсов тел, составляющих замкнутую систему, остается постоянной при любых взаимодействиях тел этой системы.

В этом состоит закон сохранения импульса .

6. Замкнутая система тел - это модель реальной системы. В природе нет таких систем, на которые не действовали бы внешние силы. Однако в ряде случаев системы взаимодействующих тел можно рассматривать как замкнутые. Это возможно в следующих случаях: внутренние силы много больше внешних сил, время взаимодействия мало, внешние силы компенсируют друг друга. Кроме того, может быть равна нулю проекция внешних сил на какое‑либо направление и тогда закон сохранения импульса выполняется для проекций импульсов взаимодействующих тел на это направление.

7. Пример решения задачи

Две железнодорожные платформы движутся навстречу друг другу со скоростями 0,3 и 0,2 м/с. Массы платформ соответственно равны 16 и 48 т. С какой скоростью и в каком направлении будут двигаться платформы после автосцепки?

Дано :

СИ

Решение

v 01 = 0,3 м/с

v 02 = 0,2 м/с

m 1 = 16 т

m 2 = 48 т

v 1 = v 2 = v

v 02 =

v 02 =

1,6104кг

4,8104кг

Изобразим на рисунке направление движения платформ до и после взаимодействия (рис. 60).

Силы тяжести, действующие на платформы, и силы реакции опоры коммпенсируют друг друга. Систему из двух платформ можно считать замкнутой

vx ?

и применить к ней закон сохранения импульса.

m 1 v 01 + m 2 v 02 = (m 1 + m 2)v .

В проекциях на ось X можно записать:

m 1 v 01x + m 2 v 02x = (m 1 + m 2)v x .

Так как v 01x = v 01 ; v 02x = –v 02 ; v x = –v , то m 1 v 01 – m 2 v 02 = –(m 1 + m 2)v.

Откуда v = – .

v = – = 0,75 м/с.

После сцепки платформы будут двигаться в ту сторону, в которую до взаимодействия двигалась платформа с большей массой.

Ответ: v = 0,75 м/с; направлена в сторону движения тележки с большей массой.

Вопросы для самопроверки

1. Что называют импульсом тела?

2. Что называют импульсом силы?

3. Как связаны импульс силы и изменение импульса тела?

4. Какую систему тел называют замкнутой?

5. Сформулируйте закон сохранения импульса.

6. Каковы границы применимости закона сохранения импульса?

Задание 17

1. Чему равен импульс тела массой 5 кг, движущегося со скоростью 20 м/с?

2. Определите изменение импульса тела массой 3 кг за 5 с под действием силы 20 Н.

3. Определите импульс автомобиля массой 1,5 т, движущегося со скоростью 20 м/с в системе отсчета, связанной: а) с неподвижным относительно Земли автомобилем; б) с автомобилем, движущимся в ту же сторону с такой же скоростью; в) с автомобилем, движущимся с такой же скоростью, но в противоположную сторону.

4. Мальчик массой 50 кг спрыгнул с неподвижной лодки массой 100 кг, расположенной в воде около берега. С какой скоростью отъехала лодка от берега, если скорость мальчика направлена горизонтально и равна 1 м/с?

5. Снаряд массой 5 кг, летевший горизонтально, разрывался на два осколка. Какова скорость снаряда, если осколок массой 2 кг при разрыве приобрел скорость 50 м/с, а второй массой 3 кг - 40 м/с? Скорости осколков направлены горизонтально.

Пуля 22-го калибра имеет массу всего 2 г. Если кому-нибудь бросить такую пулю, то он легко сможет поймать ее даже без перчаток. Если же попытаться поймать такую пулю, вылетевшую из дула со скоростью 300 м/с, то даже перчатки тут не помогут.

Если на тебя катится игрушечная тележка, ты сможешь остановить ее носком ноги. Если на тебя катится грузовик, следует уносить ноги с его пути.


Рассмотрим задачу, которая демонстрирует связь импульса силы и изменения импульса тела.

Пример. Масса мяча равна 400 г, скорость, которую приобрел мяч после удара - 30 м/с. Сила, с которой нога действовала на мяч - 1500 Н, а время удара 8 мс. Найти импульс силы и изменение импульса тела для мяча.


Изменение импульса тела

Пример. Оценить среднюю силу со стороны пола, действующую на мяч во время удара.

1) Во время удара на мяч действуют две силы: сила реакции опоры , сила тяжести .

Сила реакции изменяется в течение времени удара, поэтому возможно найти среднюю силу реакции пола.

2) Изменение импульса тела изображено на рисунке

3) Из второго закона Ньютона

Главное запомнить

1) Формулы импульса тела, импульса силы;
2) Направление вектора импульса;
3) Находить изменение импульса тела

Вывод второго закона Ньютона в общем виде

График F(t). Переменная сила

Импульс силы численно равен площади фигуры под графиком F(t).


Если же сила непостоянная во времени, например линейно увеличивается F=kt , то импульс этой силы равен площади треугольника. Можно заменить эту силу такой постоянной силой, которая изменит импульс тела на ту же величину за тот же промежуток времени

Средняя равнодействующая сила

ЗАКОН СОХРАНЕНИЯ ИМПУЛЬСА

Тестирование онлайн

Замкнутая система тел

Это система тел, которые взаимодействуют только друг с другом. Нет внешних сил взаимодействия.

В реальном мире такой системы не может быть, нет возможности убрать всякое внешнее взаимодействие. Замкнутая система тел - это физическая модель, как и материальная точка является моделью. Это модель системы тел, которые якобы взаимодействуют только друг с другом, внешние силы не берутся во внимание, ими пренебрегают.

Закон сохранения импульса

В замкнутой системе тел векторная сумма импульсов тел не изменяется при взаимодействии тел. Если импульс одного тела увеличился, то это означает, что у какого-то другого тела (или нескольких тел) в этот момент импульс уменьшился ровно на такую же величину.

Рассмотрим такой пример. Девочка и мальчик катаются на коньках. Замкнутая система тел - девочка и мальчик (трением и другими внешними силами пренебрегаем). Девочка стоит на месте, ее импульс равен нулю, так как скорость нулевая (см. формулу импульса тела). После того как мальчик, движущийся с некоторой скоростью, столкнется с девочкой, она тоже начнет двигаться. Теперь ее тело обладает импульсом. Численное значение импульса девочки ровно такое же, на сколько уменьшился после столкновения импульс мальчика.

Одно тело массой 20кг движется со скоростью , второе тело массой 4кг движется в том же направлении со скоростью . Чему равны импульсы каждого тела. Чему равен импульс системы?


Импульс системы тел - это векторная сумма импульсов всех тел, входящих в систему. В нашем примере, это сумма двух векторов (так как рассматриваются два тела), которые направлены в одну сторону, поэтому

Сейчас вычислим импульс системы тел из предыдущего примера, если второе тело двигается в обратном направлении.


Так как тела двигаются в противоположных направлениях, получаем векторную сумму импульсов разнонаправленных. Подробнее о сумме векторов .

Главное запомнить

1) Что такое замкнутая система тел;
2) Закон сохранения импульса и его применение