Дисперсия случайной величины имеющей равномерное распределение. Преобразование равномерно распределенной случайной величины в нормально распределенную

Распределение вероятностей непрерывной случайной величины X , принимающей все значения из отрезка , называется равномерным , если её плотность вероятности на этом отрезке постоянна, а вне его равна нулю. Таким образом, плотность вероятности непрерывной случайной величины X , распределённой равномерно на отрезке , имеет вид:

Определим математическое ожидание , дисперсию и для случайной величины с равномерным распределением.

, , .

Пример. Все значения равномерно распределённой случайной величины лежат на отрезке . Найти вероятность попадания случайной величины в промежуток (3;5) .

a=2, b=8, .

Биномиальное распределение

Пусть производится n испытаний, причём вероятность появления события A в каждом испытании равна p и не зависит от исхода других испытаний (независимые испытания). Так как вероятность наступления события A в одном испытании равна p , то вероятность его ненаступления равна q=1-p .

Пусть событие A наступило в n испытаниях m раз. Это сложное событие можно записать в виде произведения:

.

Тогда вероятность того, что при n испытаниях событие A наступит m раз , вычисляется по формуле:

или (1)

Формула (1) называется формулой Бернулли .

Пусть X – случайная величина, равная числу появлений события A в n испытаниях, которая принимает значения с вероятностями:

Полученный закон распределения случайной величины называется законом биномиального распределения .

X m n
P

Математическое ожидание , дисперсия и среднее квадратическое отклонение случайных величин, распределённых по биномиальному закону, определяются по формулам:

, , .

Пример. По мишени производятся три выстрела, причём вероятность попадания при каждом выстреле равна 0,8. Рассматривается случайная величина X – число попаданий в мишень. Найти её закон распределения, математическое ожидание, дисперсию и среднее квадратическое отклонение.

p=0,8 , q=0,2 , n=3 , , , .

- вероятность 0 попаданий;



Вероятность одного попадания;

Вероятность двух попаданий;

- вероятность трёх попаданий.

Получаем закон распределения:

X
P 0,008 0,096 0,384 0,512

Задачи

1. Монету бросают 7 раз. Найти вероятность того, что 4 раза она упадёт гербом вверх.

2. Монету бросают 8 раз. Найти вероятность того, что герб выпадет не более трёх раз.

3. Вероятность попадания в цель при стрельбе из орудия p=0,6. Найти математическое ожидание общего числа попаданий, если будет произведено 10 выстрелов.

4. Найти математическое ожидание числа лотерейных билетов, на которые выпадут выигрыши, если приобретено 20 билетов, причём вероятность выигрыша по одному билету равна 0,3.

На практике встречаются случайные величины, о которых заранее известно, что они могут принять какое-либо значение в строго определенных границах, причем в этих границах все значения случайной величины имеют одинаковую вероятность (обладают одной и той же плотностью вероятностей).

Например, при поломке часов остановившаяся минутная стрелка будет с одинаковой вероятностью (плотностью вероятности) показывать время, прошедшее от начала данного часа до поломки часов. Это время является случайной величиной, принимающей с одинаковой плотностью вероят­ности значения, которые не выходят за границы, определенные продолжительностью одного часа. К подобным случайным величинам относится также и погрешность округления. Про такие величины говорят, что они распределены равномерно, т. е. имеют равномерное распределение.

Определение. Непрерывная случайная величина Х имеет равномерное распределение на отрезке [а, в ], если на этом отрезке плотность распределения вероятности случайной величины постоянна, т. е. если дифференциальная функция распределения f (х) имеет следующий вид:

Иногда это распределение называют законом равномерной плотности . Про величину, которая имеет равномерное распределение на некотором отрезке, будем говорить, что она распределена равномерно на этом отрезке.

Найдем значение постоянной с. Так как площадь, ограниченная кривой распределения и осью Ох, равна 1, то

откуда с =1/(b - a ).

Теперь функцию f (x ) можно представить в виде

Построим функцию распределения F (x ), для чего найдем выражение F (x ) на интервале [ a , b ]:


Графики функций f (x ) и F (x ) имеют вид:


Найдем числовые характеристики.

Используя формулу для вычисления математического ожидания НСВ, имеем:

Таким образом, математическое ожидание случайной вели­чины, равномерно распределенной на отрезке [ a , b ] совпадает с серединой этого отрезка.

Найдем дисперсию равномерно распределенной случайной величины:

откуда сразу же следует, что среднее квадратическое отклонение:

Найдем теперь вероятность попадания значения случайной величины, имеющей равномерное распределение, на интервал (a , b ) , принадлежащий целиком отрезку [ a , b ]:


Геометрически эта вероятность представляетсобойплощадь заштрихованного прямоугольника. Числа а и b называются параметрами распределения и однозначно определяют равномерное распределение.

Пример1. Автобусы некоторого маршрута идут строго по расписанию. Интервал движения 5 минут. Найти вероятность того, что пассажир, подошедший к остановке. Будет ожидать очередной автобус менее 3 минут.

Решение:

СВ- время ожидания автобуса имеет равномерное распределение. Тогда искомая вероятность будет равна:

Пример2. Ребро куба х измерено приближенно. Причем

Рассматривая ребро куба как случайную величину, распределенную равномерно в интервале (a , b ) , найти математическое ожидание и дисперсию объема куба.

Решение:

Объем куба- случайная величина, определяемая выражением У= Х 3 . Тогда математическое ожидание равно:

Дисперсия:

Онлайн сервис:

Равномерное распределение. Случайная величина X имеет смысл координаты точки, выбранной наудачу на отрезке

[а, Ь. Равномерную плотность распределения случайной величины X (рис. 10.5, а) можно определить как:

Рис. 10.5. Равномерное распределение случайной величины: а - плотность распределения; б - функция распределения

Функция распределения случайной величины X имеет вид:

График функции равномерного распределения показан на рис. 10.5, б.

Преобразование Лапласа равномерного распределения вычислим по (10.3):

Математическое ожидание и дисперсия легко вычисляются непосредственно из соответствующих определений:

Аналогичные формулы для математического ожидания и дисперсии можно также получить с использованием преобразования Лапласа по формулам (10.8), (10.9).

Рассмотрим пример системы сервиса, которую можно описать равномерным распределением.

Движение транспорта на перекрестке регулируется автоматическим светофором, в котором 1 мин горит зеленый свет и 0,5 мин - красный. Водители подъезжают к перекрестку в случайные моменты времени с равномерным распределением, не связанным с работой светофора. Найдем вероятность того, что автомобиль проедет перекресток, не останавливаясь.

Момент проезда автомобиля через перекресток распределен равномерно в интервале 1 + 0,5 = 1,5 мин. Автомобиль проедет через перекресток, не останавливаясь, если момент проезда перекрестка попадает в интервал времени . Для равномерно распределенной случайной величины в интервале вероятность попадания в интервал равна 1/1,5=2/3. Время ожидания Г ож есть смешанная случайная величина. С вероятностью 2/3 она равна нулю, а с вероятностью 0,5/1,5 принимает любое значение между 0 и 0,5 мин. Следовательно, среднее время и дисперсия ожидания у перекрестка

Экспоненциальное (показательное) распределение. Для экспоненциального распределения плотность распределения случайной величины можно записать как:

где А называют параметром распределения.

График плотности вероятности экспоненциального распределения дан на рис. 10.6, а.

Функция распределения случайной величины с экспоненциальным распределением имеет вид


Рис. 10.6. Экспоненциальное распределение случайной величины: а - плотность распределения; б - функция распределения

График функции экспоненциального распределения показан на рис. 10.6, 6.

Преобразование Лапласа экспоненциального распределения вычислим по (10.3):

Покажем, что для случайной величины X, имеющей экспоненциальное распределение, математическое ожидание равно среднеквадратическому отклонению а и обратно параметру А,:

Таким образом, для экспоненциального распределения имеем: Можно также показать, что

т.е. экспоненциальное распределение полностью характеризуется средним значением или параметром X .

Экспоненциальное распределение обладает рядом полезных свойств, которые используются при моделировании систем сервиса. Например, оно не имеет памяти. Когда , то

Другими словами, если случайная величина соответствует времени, то распределение оставшейся длительности не зависит от времени, которое уже прошло. Данное свойство иллюстрирует рис. 10.7.


Рис. 10.7.

Рассмотрим пример системы, параметры функционирования которой можно описать экспоненциальным распределением.

При работе некоторого прибора в случайные моменты времени возникают неисправности. Время работы прибора Т от его включения до возникновения неисправности распределено по экспоненциальному закону с параметром X. При обнаружении неисправности прибор сразу поступает в ремонт, который продолжается время / 0 . Найдем плотность и функцию распределения промежутка времени Г, между двумя соседними неисправностями, математическое ожидание и дисперсию, а также вероятность того, что время Т х будет больше 2t 0 .

Так как ,то


Нормальное распределение. Нормальным называют распределение вероятностей непрерывной случайной величины, которое описывается плотностью

Из (10.48) следует, что нормальное распределение определяется двумя параметрами - математическим ожиданием т и дисперсией а 2 . График плотности вероятности случайной величины с нормальным распределением при т= 0, а 2 =1 показан на рис. 10.8, а.


Рис. 10.8. Нормальный закон распределения случайной величины при т = 0, ст 2 = 1: а - плотность вероятности; 6 - функция распределения

Функция распределения описывается формулой

График функции распределения вероятности нормально распределенной случайной величины при т = 0, а 2 = 1 показан на рис. 10.8, б.

Определим вероятность того, что X примет значение, принадлежащее интервалу (а, р):

где - функция Лапласа, и вероятность того,

что абсолютное значение отклонения меньше положительного числа 6:

В частности, при т = 0 справедливо равенство:

Как видно, случайная величина с нормальным распределением может принимать как положительные значения, так и отрицательные. Поэтому для вычисления моментов необходимо использовать двустороннее преобразование Лапласа

Однако этот интеграл не обязательно существует. Если он существует, вместо (10.50) обычно используют выражение

которое называют характеристической функцией или производящей функцией моментов.

Вычислим по формуле (10.51) производящую функцию моментов нормального распределения:

После преобразования числителя подэкспоненциального выражения к виду получим

Интеграл

так как является интегралом нормальной плотности вероятности с параметрами т + so 2 и а 2 . Следовательно,

Дифференцируя (10.52), получим

Из данных выражений можно найти моменты:

Нормальное распределение широко распространено на практике, так как, согласно центральной предельной теореме, если случайная величина представляет собой сумму очень большого числа взаимно независимых случайных величин, влияние каждой из которых на всю сумму ничтожно мало, то имеет распределение, близкое к нормальному.

Рассмотрим пример системы, параметры которой можно описать нормальным распределением.

Предприятие изготовляет деталь заданного размера. Качество детали оценивается путем измерения ее размера. Случайные ошибки измерения подчинены нормальному закону со средним квадратическим отклонением а - Юмкм. Найдем вероятность того, что ошибка измерения не будет превышать 15 мкм.

По (10.49) находим

Для удобства использования рассмотренных распределений сведем полученные формулы в табл. 10.1 и 10.2.

Таблица 10.1. Основные характеристики непрерывных распределений

Таблица 10.2. Производящие функции непрерывных распределений

КОНТРОЛЬНЫЕ ВОПРОСЫ

  • 1. Какие распределения вероятностей относят к непрерывным?
  • 2. Что такое преобразование Лапласа-Стилтьеса? Для чего оно используется?
  • 3. Как вычислить моменты случайных величин с использованием преобразования Лапласа-Стилтьеса?
  • 4. Чему равно преобразование Лапласа суммы независимых случайных величин?
  • 5. Как вычислить среднее время и дисперсию времени перехода системы из одного состояния в другое с использованием сигнальных графов?
  • 6. Дайте основные характеристики равномерного распределения. Приведите примеры его использования в задачах сервиса.
  • 7. Дайте основные характеристики экспоненциального распределения. Приведите примеры его использования в задачах сервиса.
  • 8. Дайте основные характеристики нормального распределения. Приведите примеры его использования в задачах сервиса.

Перейдем теперь к часто используемым на практике распределениям непрерывной случайной величины.

Непрерывная с.в. Х называется равномерно распределенной на отрезке [a , b ], если плотность ее вероятности постоянна на этом отрезке, а вне его равна 0 (т.е. случайная величина Х сосредоточена на отрезке [a , b ], на котором имеет постоянную плотность). По данному определению плотность равномерно распределенной на отрезке [a , b ] случайной величины Х имеет вид:

где с есть некоторое число. Впрочем, его легко найти, используя свойство плотности вероятности для с.в., сосредоточенных на отрезке [a , b ]:
. Отсюда следует, что
, откуда
. Поэтомуплотность равномерно распределенной на отрезке [a , b ] случайной величины Х имеет вид:

.

Судить о равномерности распределения н.с.в. Х можно из следующего соображения. Непрерывная случайная величина имеет равномерное распределение на отрезке [a , b ], если она принимает значения только из этого отрезка, и любое число из этого отрезка не имеет преимущества перед другими числами этого отрезка в смысле возможности быть значением этой случайной величины.

К случайным величинам, имеющим равномерное распределение относятся такие величины, как время ожидания транспорта на остановке (при постоянном интервале движения длительность ожидания равномерно распределена на этом интервале), ошибка округления числа до целого (равномерно распределена на [−0.5, 0.5 ]) и другие.

Вид функции распределения F (x ) a , b ] случайной величины Х ищется по известной плотности вероятности f (x ) c помощью формулы их связи
. В результате соответствующих вычислений получаем следующую формулу для функции распределенияF (x ) равномерно распределенной отрезке [a , b ] случайной величины Х :

.

На рисунках приведены графики плотности вероятности f (x ) и функции распределения f (x ) равномерно распределенной отрезке [a , b ] случайной величины Х :


Математическое ожидание, дисперсия, среднее квадратическое отклонение, мода и медиана равномерно распределенной отрезке [a , b ] случайной величины Х вычисляются по плотности вероятности f (x ) обычным образом (и достаточно просто из-за простого вида f (x ) ). В результате получаются следующие формулы:

а модой d (X ) является любое число отрезка [a , b ].

Найдем вероятность попадания равномерно распределенной отрезке [a , b ] случайной величины Х в интервал
, полностью лежащий внутри [a , b ]. Учитывая известный вид функции распределения, получаем:

Таким образом, вероятность попадания равномерно распределенной отрезке [a , b ] случайной величины Х в интервал
, полностью лежащий внутри [a , b ], не зависит от положения этого интервала, а зависит только от его длины и прямо пропорциональна этой длине.

Пример . Интервал движения автобуса составляет 10 минут. Какова вероятность того, что пассажир, подошедший к остановке, прождет автобус менее 3 минут? Каково среднее время ожидания автобуса?

Нормальное распределение

Это распределение наиболее часто встречается на практике и играет исключительную роль в теории вероятностей и математической статистике и их приложениях, поскольку такое распределение имеют очень многие случайные величины в естествознании, экономике, психологии, социологии, военных науках и так далее. Данное распределение является предельным законом, к которому приближаются (при определенных естественных условиях) многие другие законы распределения. С помощью нормального закона распределения описываются также явления, подверженные действию многих независимых случайных факторов любой природы и любого закона их распределения. Перейдем к определениям.

Непрерывная случайная величина называется распределенной по нормальному закону (или закону Гаусса) , если ее плотность вероятности имеет вид:

,

где числа а и σ (σ>0 ) являются параметрами этого распределения.

Как уже было сказано, закон Гаусса распределения случайных величин имеет многочисленные приложения. По этому закону распределены ошибки измерений приборами, отклонение от центра мишени при стрельбе, размеры изготовленных деталей, вес и рост людей, годовое количество осадков, количество новорожденных и многое другое.

Приведенная формула плотности вероятности нормально распределенной случайной величины содержит, как было сказано, два параметра а и σ , а потому задает семейство функций, меняющихся в зависимости от значений этих параметров. Если применить обычные методы математического анализа исследования функций и построения графиков к плотности вероятности нормального распределения, то можно сделать следующие выводы.


являются точками его перегиба.

Исходя из полученной информации, строим график плотности вероятности f (x ) нормального распределения (он называется кривой Гаусса − рисунок).

Выясним, как влияет изменение параметров а и σ на форму кривой Гаусса. Очевидно (это видно из формулы для плотности нормального распределения), что изменение параметра а не меняет форму кривой, а приводит лишь к ее сдвигу вправо или влево вдоль оси х . Зависимость от σ сложнее. Из проведенного выше исследования видно, как зависит величина максимуму и координаты точек перегиба от параметра σ . К тому же надо учесть, что при любых параметрах а и σ площадь под кривой Гаусса остается равной 1 (это общее свойство плотности вероятности). Из сказанного следует, что с ростом параметра σ кривая становится более пологой и вытягивается вдоль оси х . На рисунке изображены кривые Гаусса при различных значениях параметра σ (σ 1 < σ< σ 2 ) и одном и том же значении параметра а .

Выясним вероятностный смысл параметров а и σ нормального распределения. Уже из симметричности кривой Гаусса относительно вертикальной прямой, проходящей через число а на оси х понятно, что среднее значение (т.е. математическое ожидание М(Х) ) нормально распределенной случайной величины равно а . Из этих же соображений мода и медиана тоже должны быть равны числу а. Точные расчеты по соответствующим формулам это подтверждают. Если же мы выписанное выше выражение для f (x ) подставим в формулу для дисперсии
, то после (достаточно непростого) вычисления интеграла получим в ответе числоσ 2 . Таким образом, для случайной величины Х , распределенной по нормальному закону, получились следующие основные ее числовые характеристики:

Поэтому вероятностный смысл параметров нормального распределения а и σ следующий. Если с.в. Х а и σ а σ.

Найдем теперь функцию распределения F (x ) для случайной величины Х , распределенной по нормальному закону, используя выписанное выше выражение для плотности вероятности f (x ) и формулу
. При подстановкеf (x ) получается «неберущийся» интеграл. Все, что удается сделать для упрощения выражения для F (x ), это представление этой функции в виде:

,

где Ф(х) − так называемая функция Лапласа , которая имеет вид

.

Интеграл, через который выражается функция Лапласа, тоже является неберущимися (но при каждом х этот интеграл может быть вычислен приближенно с любой наперед заданной точностью). Однако вычислять его и не потребуется, так как в конце любого учебника по теории вероятностей есть таблица для определения значений функции Ф(х) при заданном значении х . В дальнейшем нам понадобится свойство нечетности функции Лапласа: Ф(−х)= Ф(х) для всех чисел х .

Найдем теперь вероятность того, что нормально распределенная с.в. Х примет значение из заданного числового интервала (α, β) . Из общих свойств функции распределения Р(α< X < β)= F (β) F (α) . Подставляя α и β в выписанное выше выражение для F (x ) , получим

.

Как сказано выше, если с.в. Х распределена нормально с параметрами а и σ , то ее среднее значение равно а , а среднее квадратическое отклонение равно σ. Поэтому среднее отклонение значений этой с.в. при испытании от числа а равно σ. Но это среднее отклонение. Поэтому возможны и бо´льшие отклонения. Узнаем, насколько возможны те или иные отклонения от среднего значения. Найдем вероятность того, что значение распределенной по нормальному закону случайной величины Х отклониться от ее среднего значения М(Х)=а менее, чем на некоторое число δ, т.е. Р (| X a |<δ ) : . Таким образом,

.

Подставляя в это равенство δ=3σ , получим вероятность того, что значение с.в. Х (при одном испытании) отклонится от среднего значения менее чем на утроенное значение σ (при среднем отклонении, как мы помним, равном σ ): (значениеФ(3) взято из таблицы значений функции Лапласа). Это почти 1 ! Тогда вероятность противоположного события (что значение отклонится не менее, чем на ) равна 1 0.997=0.003 , что очень близко к 0 . Поэтому это событие «почти невозможно» случается крайне редко (в среднем 3 раза из 1000 ). Это рассуждение является обоснованием широко известного «правила трех сигм».

Правило трех сигм . Нормально распределенная случайная величина при единичном испытании практически не отклоняется от своего среднего далее, чем на .

Еще раз подчеркнем, что речь идет об одном испытании. Если испытаний случайной величины много, то вполне возможно, что какое-либо ее значение и удалится от среднего далее, чем . Это подтверждает следующий

Пример . Какова вероятность, что при 100 испытаниях нормально распределенной случайной величины Х хотя бы одно ее значение отклонится от среднего более, чем на утроенное среднее квадратическое отклонение? А при 1000 испытаниях?

Решение. Пусть событие А означает, что при испытании случайной величины Х ее значение отклонилось от среднего более, чем на 3σ. Как только что было выяснено, вероятность этого события р=Р(А)=0.003 . Проведено 100 таких испытаний. Надо узнать вероятность того, что событие А произошло хотя бы раз, т.е. произошло от 1 до 100 раз. Это типичная задача схемы Бернулли с параметрами n =100 (число независимых испытаний), р=0.003 (вероятность события А в одном испытании), q =1− p =0.997 . Требуется найти Р 100 (1≤ k ≤100) . В данном случае, конечно, проще найти сначала вероятность противоположного события Р 100 (0) − вероятность того, что событие А не произошло ни разу (т.е. произошло 0 раз) . Учитывая связь вероятностей самого события и ему противоположного, получим:

Не так уж мало. Вполне может произойти (происходит в среднем в каждой четвертой такой серии испытаний). При 1000 испытаний по такой же схеме можно получить, что вероятность хотя бы одного отклонения далее, чем на , равно: . Так что можно с большой уверенностью дождаться хотя бы одного такого отклонения.

Пример . Рост мужчин определенной возрастной группы распределен нормально с математическим ожиданием a , и среднеквадратическим отклонением σ . Какую долю костюмов k -го роста следует предусмотреть в общем объеме производства для данной возрастной группы, если k -ый рост определяется следующими пределами:

1 рост: 158 164см 2 рост: 164 − 170см 3 рост: 170 − 176см 4 рост: 176 − 182см

Решение. Решим задачу при следующих значениях параметров: а=178, σ=6, k =3 . Пусть с.в. Х рост случайно выбранного мужчины (она распределена по условию нормально с заданными параметрами). Найдем вероятность того, что наугад выбранному мужчине понадобится 3 -й рост. Пользуясь нечетностью функции Лапласа Ф(х) и таблицей ее значений: P(170 Поэтому в общем объеме производства надо предусмотреть 0.2789*100%=27.89% костюмов 3 -го роста.