Тип матрицы mva или ips. Какая матрица лучше для монитора: особенности, характеристики и виды

Выбирая себе монитор, телевизор или телефон, покупатель часто стает перед выбором типа экрана. Какому же из них отдать предпочтение: IPS или TFT? Причиной такого замешательства стало постоянное усовершенствование технологий по изготовлению дисплеев.

Все мониторы с TFT технологией можно разделить на три основных типа:

  1. TN+Film.
  2. PVA/MVA.

То есть, технология TFT представляет собой жидкокристаллический дисплей с активной матрицей , а IPS — это одна из разновидностей этой матрицы . И сравнение этих двух категорий не возможно, так как практически это одно и тоже. Но если все же разобраться более подробно в том, что собой представляет дисплей с TFT матрицей, то сравнение провести можно, но не между экранами, а между технологиями их изготовления: IPS и TFT-TN.

Общее понятие TFT

TFT (Thin Film Transistor) переводится, как тонкопленочный транзистор . В основе ЖК дисплея с технологией TFT лежит активная матрица. Такая технология подразумевает спиральное расположение кристаллов, которые в условиях сильного напряжения делают поворот таким образом, что экран стает черным. А при отсутствии напряжения большой мощности мы видим белый экран. Дисплеи с такой технологией на выходе выдают лишь темно-серый цвет вместо идеального черного. Поэтому TFT дисплеи пользуются популярностью в основном в изготовлении более дешевых моделей.

Описание IPS

Технология матрицы ЖК экрана IPS (In-Plane Switching) подразумевает параллельное расположение кристаллов по всей плоскости монитора . Спирали здесь отсутствуют. И поэтому кристаллы в условиях сильного напряжения не поворачиваются. Иными словами технология IPS — это ничто иное, как улучшенная TFT. Она намного лучше передает черный цвет, тем самым улучшая степень контрастности и яркости изображения. Именно поэтому данная технология стоит дороже, чем TFT, и используется в более дорогих моделях.

Основные отличия TN-TFT и IPS

Желая реализовать как можно больше продукции, менеджеры по продажам вводят людей в заблуждение о том, что TFT и IPS — это совершенно разные типы экранов. Специалисты из сферы маркетинга не дают исчерпывающих сведений о технологиях и это позволяет им выдавать уже существующую разработку за только что появившуюся.

Рассматривая IPS и TFT, мы видим, что это практически одно и тоже . Разница лишь в том, что монитор с IPS технологией являются более свежей разработкой, по сравнению с TN-TFT. Но несмотря на это, все же можно выделить ряд отличий между данными категориями:

  1. Повышенная контрастность . То, как отображается черный цвет, напрямую влияет на контрастность изображения. Если наклонить экран с технологией TFT без IPS, то прочитать что-либо будет практически не возможно. А все из-за того, что экран при наклоне стает темным. Если же рассматривать IPS матрицу, то, благодаря тому, что передача черного цвета производится кристаллами идеально, изображение получается достаточно четким.
  2. Передача цвета и количество отображаемых оттенков . Матрица TN-TFT не лучшим образом передает цвета. А все из-за того, что каждый пиксель имеет собственный оттенок и это приводит к искажению цвета. Экран с технологией IPS намного бережнее передает изображение.
  3. Задержка отклика . Одним из преимуществ TN-TFT экранов над IPS является высокоскоростной отклик. А все потому, что на поворот множества параллельных кристаллов IPS затрачивает много времени. Отсюда делаем вывод, что там, где скорость прорисовки имеет большое значение, лучше использовать экран с матрицей TN. Дисплеи с технологией IPS работают медленнее, но в повседневной жизни этого не заметно. А выявить данное различие можно лишь применив специально предназначенные для этого технологические тесты. Как правило, предпочтение лучше отдавать дисплеям с матрицей IPS.
  4. Угол обзора . Благодаря широкому углу обзора экран с технологией IPS не искажает изображения, даже если смотреть на него под углом в 178 градусов. При чем такое значение угла обзора может быть как по вертикали, так и по горизонтали.
  5. Энергоемкость . Дисплеи с IPS технологией, в отличии от TN-TFT, требуют больше энергии. Это обусловлено тем, что для того, чтобы повернуть параллельные кристаллы, нужно большое напряжение. В итоге на аккумулятор идет больше нагрузки, чем при использовании TFT матрицы. Если вам необходимо устройство с небольшой энергоемкостью, то TFT технология будет идеальным вариантом.
  6. Ценовая политика . В большинстве бюджетных моделей электроники используют дисплеи на основе TN-TFT технологии, поскольку этот вид матрицы является самым недорогим.На сегодняшний день мониторы с IPS матрицей хоть и стоят дороже, но их используют практически во всех современных электронных моделях. Это постепенно приводит к тому, что IPS матрица практически вытесняет оборудование с технологией TN-TFT.

Итоги

Исходя из всего выше сказанного, можно подвести следующий итог.

TFT и IPS матрицы: особенности, преимущества и недостатки

В современном мире мы регулярно сталкиваемся с дисплеями телефонов, планшетов, мониторами ПК и телевизоров. Технологии производства жидкокристаллических матриц не стоят на месте, связи с чем у многих людей возникает вопрос, что лучше выбрать TFT или IPS?

Для того чтобы полностью ответить на этот вопрос, необходимо тщательно разобраться в различиях обеих матриц, выделить их особенности, преимущества и недостатки. Зная все эти тонкости, вы с легкостью сможете подобрать устройство, дисплей которого будет полностью отвечать вашим требованиям. В этом вам поможет наша статья.

TFT матрицы

Thin Film Transistor (TFT) – это система производства жидкокристаллических дисплеев, в основе которой лежит активная матрица из тонкопленочных транзисторов. При подаче напряжения на такую матрицу, кристаллы поворачиваются друг к другу, что приводит к образованию черного цвета. Отключение электричества дает противоположный результат — кристаллы образовывают белый цвет. Изменения подаваемого напряжения позволяет формировать любой цвет на каждом отдельно взятом пикселе.

Главным преимуществом TFT дисплеев является относительно невысокая цена производства, в сравнении с современными аналогами. Кроме того, такие матрицы обладают отличной яркостью и временем отклика. Благодаря чему, искажения при просмотре динамических сцен незаметны. Дисплеи, изготовленные по технологии TFT, чаще всего используются в бюджетных телевизорах и мониторах.

Недостатки TFT дисплеев:

    • низкая цветопередача. Технология имеет ограничение в 6 бит на один канал;
    • спиральное расположение кристаллов негативно сказывается на контрастности изображение;
    • качество изображения заметно снижается при изменении угла обзора;
    • высокая вероятность появления «битых» пикселей;
    • относительно низкое энергопотребление.

Заметнее всего недостатки TFT матриц сказываются при работе с черным цветом. Он может искажаться до серого, или же наоборот, быть чересчур контрастным.

IPS матрицы

Матрица IPS является усовершенствованным продолжением дисплеев, разработанных по технологии TFT. Главным различием между этими матрицами является то, что в TFT жидкие кристаллы расположены по спирали, а в IPS кристаллы лежат в одной плоскости параллельно друг другу. Кроме того, при отсутствии электричества они не поворачиваются, что положительно сказалось на отображении черного цвета.

Преимущества IPS матриц:

  • углы обзора, при которых качество изображения не снижается, увеличены до 178 градусов;
  • улучшенная цветопередача. Количество данных, передаваемых на каждый канал увеличено до 8 бит;
  • существенно улучшенная контрастность;
  • снижено энергопотребление;
  • низкая вероятность появления «битых» или выгоревших пикселей.

Изображение на IPS матрице выглядит более живим и насыщенным, но это не означает, что эта технология лишена недостатков. В сравнении с предшественником у IPS значительно снижена яркость изображения. Также, вследствие изменения управляющих электродов, пострадал такой показатель, как время отклика матрицы. Последним, но не менее значимым недостатком, является относительно высокая цена на устройства, в которых используются IPS дисплеи. Как правило, они на 10-20% дороже аналогичных с TFT матрицей.

Что выбрать: TFT или IPS?

Стоит понимать, что TFT и IPS матрицы, несмотря на существенные различия в качестве изображения, технологии очень похожие. Они обе созданы на основе активных матриц и используют одинаковые по структуре жидкие кристаллы. Многие современные производители отдают свое предпочтение IPS матрицам. Во многом благодаря тому, что они могут составить более достойную конкуренцию плазменным матрицам и имеют весомые перспективы в будущем. Тем не менее TFT матрицы также развиваются. Сейчас на рынке можно встретить TFT-TN и TFT-HD дисплеи. Они практически не уступают в качестве изображения IPS матрицам, но при этом имеет более доступную стоимость. Но на данный момент устройств с такими мониторами не так много.

Если для вас важно качество изображения и вы готовы незначительно доплатить, то устройство с IPS дисплеем является оптимальным выбором.

Основы монитороведения. Типы матриц: IPS

С момента создания первого монитора на жидких кристаллах прошло уже довольно много времени, когда мир понял, что так дальше продолжаться не может, - выдаваемого TN-технологией качества явно стало не хватать. Те нововведения, что были призваны исправить недостатки TN-матриц (подробно и рассматриваются в предыдущих статьях), спасли ситуацию лишь частично. Поэтому к середине 90-х годов прошлого века начались активные поиски новых решений, способных перевести качество ЖК-мониторов на принципиально новый уровень.

Так уж бывает в мире технологий, что одни ищут решения возникающих проблем путём модернизации имеющихся разработок, а другие не боятся начинать всё с нуля. Гордые японцы под эгидой долго смотрели на весь этот шум, потом вздохнули, засучили рукава и в 1996 году явили миру свою собственную разработку, лишённую минусов TN-технологии. Названа она была IPS (In-Plane Switching) , что можно перевести как «переключение в плоскости». От стандартной TN-матрицы она отличалась тем, что, во-первых, кристаллы в матрице были не скручены, а располагались параллельно друг другу в одной плоскости (отсюда и название). А во-вторых, оба контакта для подачи напряжения располагались на одной стороне ячейки.

Схематическое изображение ячейки в IPS-матрице

Что это дало в результате? В IPS-матрицах при отсутствии напряжения свет не проходил через поляризаторы, поэтому, в отличие от TN-технологии, чёрный цвет здесь был именно чёрным. Первые версии отличались ещё одной особенностью - при взгляде на экран сбоку чёрный цвет давал фиолетовый оттенок (впоследствии эта проблема была решена). В выключенном состоянии матрица свет не пропускала, поэтому теперь, если пиксель выходил из строя, то, в отличие от TN-матриц, появлялась не светящаяся точка, а чёрная. К тому же на порядок возросло качество цветопередачи.

Но, как обычно это бывает в таких случаях, решение старых проблем породило новые. В связи с особенностями «конструкции», для того чтобы повернуть кристаллы, стало требоваться гораздо больше времени, соответственно, матрица стала гораздо более «медленной». Далее, поскольку оба контакта расположили на одной стороне, это уменьшило полезную площадь (незначительно, но тем не менее), что, в свою очередь, привело к уменьшению яркости и контрастности панелей, созданных по этой технологии.

Но и это ещё не всё. Расход энергии тоже возрос - как за счёт технических решений, так и за счёт использования более мощных источников освещения. Как результат - цена этих матриц довольно высока.

В любом случае, качество изображения стало гораздо выше, что позволило сразу нескольким компаниям активно броситься на поиски модернизаций с целью уменьшить «вредные» параметры и улучшить преимущества. Одновременно с Hitachi эту же самую технологию стали использовать и в (только вот называлась она у них Super Fine TFT , или SFT ).

Уже в 1998 году Hitachi модернизировала матрицы IPS, уменьшив время отклика. Технологию, которую назвали S-IPS , сразу же взяли на вооружение такие гиганты, как и . Стоит отметить, что на сегодняшний день именно по направлению IPS существует больше всего модификаций, которые далеко ушли от первоначальной версии. И хотя общие моменты, касающиеся этих матриц, остаются, во многих модификациях некоторые параметры были сильно улучшены.

В современных цифровых устройствах (мониторах, телевизорах, смартфонах, планшетах и др.) для отображения картинки чаще всего используются жидкокристаллические (ЖК) матрицы. Одной из технологий способа построения этой матрицы является IPS. Дословно, в переводе с английского – in plane switching – означает «переключение в одной плоскости».

Для того чтобы понять, что это за переключение и зачем оно нужно необходимо понять, каким именно образом строится картинка на экране ЖК.

Общие принципы построения ЖК матрицы

Пришедшая на смену электронно-лучевым трубкам, технология построения ЖК мониторов включает в себя в качестве ключевого элемента жидкокристаллическую матрицу . Эта матрица находится на передней поверхности монитора. Поскольку матрица только компонует картинку, то для нее требуется подсветка, которая входит в состав дисплея. Состоит ЖК матрица из следующих элементов, которые конструктивно реализованы в виде слоев:

  • цветовой фильтр;
  • горизонтальный фильтр;
  • прозрачный электрод (фронтальный);
  • собственно жидкокристаллический наполнитель;
  • прозрачный электрод (тыловой);
  • вертикальный фильтр.

В эту многослойную структуру также могут входить и специальные антибликовые слои, защитные покрытия, сенсорные слои (чаще емкостные), но они не являются ключевыми для отображения картинки. Сама картинка строится из пикселов, которые образуются из субпикселов базовых цветов (RGB): красного, зеленого и синего. Свет, проходя от тыловой стороны матрицы, проходит через оба поляризационных фильтра и ЖК слой, через цветовой фильтр. Цветовой фильтр как раз и окрашивает эти световые потоки в один из трех цветов RGB. Принцип построения пикселов из субпикселов — это отдельная обширная тема и в рамках данного обзора рассматриваться не будет.

Собственно, сама технология ЖК состоит в том , каким образом будет проходить прохождение светового пучка до пользователя. И если он будет проходить, то насколько он будет ярким. Кристаллы ЖК матриц в ячейках пропускают свет или нет в зависимости от того, какое напряжение подается на электроды. Эффективность работы матриц определяется технологией ее построения и используемого материала. На сегодняшний день наибольшее распространение получили матрицы TN и IPS и их усовершенствованные разновидности.

Технология построения TN матриц

Исторически этот тип матриц появился существенно раньше IPS . Дословно TN (англ. – «twisted nematic») означает «скрученный кристалл». Эта фраза как нельзя точно определяет способ его работы. Молекулы кристаллов в своем слое скручены на 90° друг относительно друга. Такое положение они занимают, если в своем субпикселе на электроды не подается напряжение. Свет при этом проходит свободно (за счет того, что угол поляризации второго фильтра на 90° отличается от первого).

При подаче напряжения на электроды, молекулы кристалла переходят из свободного состояния в упорядоченное: вдоль линии поляризации входного фильтра. Свет из-за этого за пределы второго фильтра не выходит и субпиксел окрашивается не в цвет светофильтра, а вырождается в черный.

  • Плюсы:
    • стоимость изготовления матриц минимальна,
    • время отклика самое быстрое, что очень важно для игровых компьютеров.
  • Минусы:
    • плохие углы обзора, яркость и цветопередача существенно меняются при просмотре на устройстве не под прямым углом;
    • очень низкая контрастность, за счет чего картинка блеклая и очень светлый черный цвет (совсем не подходит для профессиональной графики).
  • Битый пиксел при этом всегда имеет белый цвет (если нет напряжения на электродах, то светофильтр всегда открыт).

Технология построения IPS матриц

Переключение кристаллов в IPS происходи в одной плоскости, о чем, собственно, и говорит исходная форма ее названия (англ. – «in plane switching»). В таких матрицах все электроды расположены на одной – тыльной подложке. При отсутствии напряжения на электродах все молекулы кристалла занимают вертикальное положение, и свет не проходит через внешний поляризационный фильтр.

Включение переводит молекулы в перпендикулярное положение, и внешний фильтр перестает быть помехой: световой поток проходит свободно.

Ключевые особенности данной технологии следующие .

  • Плюсы:
    • яркие и насыщенные цвета за счет улучшенной контрастности, черный цвет всегда черный (можно использовать в профессиональной графике);
    • большой угол обзора до 178°.
  • Минусы:
    • время отклика увеличилось за счет того, что электроды теперь расположены только с одной стороны (критично для игровых приложений);
    • высокая стоимость.
  • Битый пиксел при этом всегда имеет черный цвет (если нет напряжения на электродах, то светофильтр всегда закрыт).

Как видно из списка, все недостатки и достоинства IPS симметричны TN. Это дополнительно подтверждает причину ее появления: технология является компромиссной и была предназначена для устранения ключевых минусов своей предшественницы. На сегодняшний день помимо названия IPS, используемого Hitachi, для нее можно встретить название SFT (super fine TFT), которое используется компанией NEC.

Битые пикселы вне зависимости от того какие они (белые или черные) не отнесены ни к плюсам ни к минусам . Это просто особенность. Если пиксел белый, то это может не сильно раздражать при обработке текстов на светлом фоне, но неудобно при просмотре темных сцен. Черный же наоборот: на темных сценах не будет заметен. Как бы то ни было, вид сбоя – битый пиксел – это всегда минус, но на разных матрицах он бывает различным.

Разновидности IPS матриц

С целью улучшения ключевых характеристик экранов мониторов были выпущены разновидности IPS матриц .

  • Super — IPS (S-IPS). Благодаря реализации технологии overdrive улучшена контрастность и уменьшено время отклика. В ее модификации Advanced super — IPS (AS-IPS) дополнительно была улучшена ее прозрачность.
  • Horizontal — IPS (H — IPS). Применяется в профессиональных графических приложениях. Применена технология Advanced True Wide Polarizer, благодаря чему однородность цвета по всей поверхности стала более равномерной. Также улучшена контрастность и оптимизирован белый цвет. Уменьшено время отклика.
  • Enhanced IPS (e-IPS). Расширила апертуру открытых пикселов. Это помогает использовать более дешевые лампы подсветки. Помимо этого, время отклика сокращено до 5 мс (очень близко к уровню TN). S-IPS 2 является ее улучшением. Уменьшен негативный эффект свечения пикселов.
  • Professional IPS (P — IPS). Существенно расширено число цветов, у субпикселей увеличено число потенциальных положений (в 4 раза).
  • Advanced high performance IPS (AH-IPS). В данной разработке выросло разрешение и число точек на дюйм. Энергопотребление при этом стало ниже и увеличена яркость.

Отдельно стоит отметить матрицу PLS (Plane to line switching) , которая является разработкой Samsung. Разработчик не стал предоставлять технического описания своей технологии. Было проведено исследование матриц под микроскопом. Отличий между PLS и IPS выявлено не было. Поскольку принципы построения этой матрицы схожи с IPS часто ее выделяют как разновидность, а не самостоятельное ответвление. В PLS пикселы расположены плотнее, яркость и энергопотребление лучше. Но при этом они существенно уступают по цветовому охвату.

Выбор монитора: TN или IPS

Экраны, построенные на технологиях TN и IPS, на сегодняшний день являются наиболее распространенными и охватывают практически весь спектр потребностей бюджетного и, частично, профессионального рынка. Существуют и другие типы матриц VA (MVA, PVA), AMOLED (с подсветкой уже каждого пикселя). Но они пока настолько дороги, что их распространение невелико.

Цветопередача и контрастность

Мониторы с IPS матрицей имеют контрастность намного лучше, чем у TN. При этом очень важно понимать: если вся картинка полностью темная или светлая, то такая контрастность – это просто возможности подсветки. Часто производители при равномерных заливках просто приглушают свет ламп подсветки. Чтобы убедиться в качестве контрастности, следует на экран вывести шахматную заливку и проверить насколько будут отличаться темные участки от светлых. Как правило, контрастность в таких тестах становится меньше 30 – 40 раз. Значение контрастности на шахматной доске в 160:1 – приемлемый результат.

Цветопередача IPS экранов осуществляется практически без искажений, в отличие от TN. Чем выше контрастность, тем насыщеннее получается картинка на экране. Это может быть полезно не только при работе с программами по обработке фотографий и видео, но также и при просмотре фильмов. Но есть усовершенствованные версии TN матриц, например, Retina от Apple, которые практически не теряют в цветопередаче.

Угол обзора и яркость

Пожалуй, этот параметр один из первых, который показывает преимущества IPS в сравнении со своим более дешевым конкурентом. Он достигает 170 — 178°, в то время как у улучшенной версии – «TN + film» он находится в диапазоне 90 — 150°. По этому параметру IPS выигрывает. Если вы смотрите маленькой компанией дома телевизор, то это не критично, но вот для случая смартфонов, когда хочется кому-то что-то показать на экране – искажение будет существенным. Поэтому на них чаще всего используются матрицы типа IPS.

По характеристикам яркости IPS экраны также выигрывают. Большие значения яркости и TN матриц делают картинку просто белесой без черных оттенков.

Время отклика и ресурсоемкость

Очень важный критерий , особенно если пользователь часто играет в приложения с динамически меняющимися сценами. У экранов на основе матрицы TN этот параметр достигает величины 1 мс, в то время как у лучших и дорогих версий S -IPS всего 5 мс. Хотя и этот результат хорош для IPS. Если пользователю важен высокий FPS и он не хочет созерцать шлейфы от объектов, то выбор стоит остановить на матрице типа TN.

Помимо скорости изменения картинки, у TN экранов есть еще два преимущества: низкая стоимость и небольшое энергопотребление.

Сенсорный экран и мобильные устройства

В последнее время стали очень распространенными устройства с емкостными сенсорными экранами . Как правило, они оснащаются матрицами IPS из-за высокого количества точек на дюйм. Чем выше плотность точек, тем более гладкими получаются шрифты на экране планшета (даже неразличимы пикселы для глаза). При использовании TN матриц в смартфонах или планшетах будет очень заметна зернистость картинки. В мониторах и телевизорах данный параметр не критичен.

Сенсорным покрытием, как правило, оснащаются именно устройства, где нужен тачскрин. Поскольку чаще всего TN матрицы берут из-за их дешевизны, то такой дорогостоящий атрибут, как емкостной экран на среднем бюджетном мониторе с разрешением 24 дюйма будет просто пустой тратой денег. В то время как на маленькой по площади поверхности планшета или смартфона (до 6 дюймов) емкостный экран просто необходим.

Именно из-за фактора дешевизны TN матрицу от IPS можно отличить нажатием : при нажатии на TN экран картинка под пальцем и вокруг начинает расплываться волнами со спектральным градиентом. Стало быть, при выборе мобильного устройства выбор в пользу IPS по этому параметру просто очевиден.

Итог

Выбирая монитор или телевизор , пользователь может еще задуматься, стоит ли ему тратиться на IPS экран. Площадь поверхности экрана у таких устройств предпочитают брать от 24 дюймов и выше. В результате чего дорогостоящая и энергоемкая матрица может не оправдать своих вложений, если не планируется выполнять профессиональные работы с графикой. К тому же, если монитор нужен для динамичных компьютерных игр, то TN матрица будет предпочтительнее.

Неоспоримо преимущество IPS матрицы при приобретении мобильного устройства: смартфона или планшета. Высокая плотность пикселов, качественная цветопередача и высокая контрастность – все эти качества помогут пользоваться экраном как на солнце, так и в помещении. Сравнение мониторов для работы с графикой всегда будет в пользу IPS. Такие вложения себя оправдают и будут меньше, чем приобретение более дорогостоящих устройств на VA матрицах.

In-Plane Switching (также Super Fine TFT) - технология изготовления жидкокристаллических дисплеев.

Технология IPS или SFT (Super Fine TFT), была разработана компаниями Hitachi и NEC в 1996 году как альтернатива TN-технологии (Twisted Nematic).

Эти компании пользуются этими двумя разными названиями одной технологии - NEC использует «SFT», а Hitachi - «IPS». Технология предназначалась для избавления от недостатков TN + film. Хотя с помощью IPS и удалось добиться увеличения угла обзора до 178°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне. TN-матрица имеет как правило лучший отклик, чем IPS, но не всегда. Так, при переходах из серого в серый лучше себя ведет IPS-матрица.

Данная матрица также к устойчива к нажатию. Прикосновение к TN- или VA-матрице приводит к «волнению» или определенной реакции на экране. У IPS-матрицы такой эффект отсутствует.

Кроме того, офтальмологи подтверждают, что IPS-матрица более комфортна для глаз.

Таким образом, IPS-матрица дает яркую и четкую картину независимо от углов зрения, оптимальную для работы в интернете, просмотра фильмов. Но самое главное - для обработки изображений и просмотра фотографий.

В настоящий момент матрицы, изготовленные по технологии IPS, - единственные среди ЖК-мониторов передают полную глубину цвета RGB - 24 бита, по 8 бит на канал.

Ранее технология IPS использовалась исключительно для профессиональных мониторов, поскольку наиболее адекватно из всех технологий производства ЖК-панелей позволяет передавать цветовую гамму. Однако, LG сделала революционный шаг по ее выводу на массовый рынок.

По состоянию на 2012 год выпущено уже много мониторов на IPS матрицах (e-IPS производства LG.Displays), имеющих 6 бит на канал. Старые TN-матрицы имеют 6-бит на канал, как и часть MVA.

IPS в настоящее время вытеснено технологией Н-IPS, которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика и увеличением контрастности. Цветность лучших Н-IPS панелей не уступает обычным мониторам ЭЛТ. Н-IPS и более дешевая e-IPS активно используется в панелях размером от 20«. LG Display, Dell, NEC, Samsung, Chimei остаются единственными производителями панелей по данной технологии.

Виды матриц IPS

IPS (Super TFT) . Это базовый уровень технологии. Преимущество - широкие углы обзора. Большинство панелей также поддерживают реалистичную цветопередачу (8-бит на канал).

S-IPS (Super-IPS) . Этот тип матрицы наследует все преимущества технологии IPS с одновременным уменьшением времени отклика.

AS-IPS (Advanced Super-IPS) - разработана корпорацией Hitachi. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. В этом типе матрицы улучшена главным образом, контрастность с расширенной цветовой гаммой традиционных S-IPS панелей до уровня, при котором они стали вторыми после некоторых S-PVA.

H-IPS (Horizontal IPS) . Достигнута ещё большая контрастность и визуальная более однородная поверхность экрана.

H-IPS A-TW (Horizontal IPS with Advanced True Wide Polarizer) - разработана LG Display для корпорации NEC. Представляет собой H-IPS панель с цветовым фильтром TW (True White - «настоящий белый») для придания белому цвету большей реалистичности и увеличения углов обзора без искажения изображения (исключается эффект свечения ЖК-панелей под углом - так называемый «глоу-эффект»). Технология Advanced True Wide Polarizer основана на поляризационной плёнке NEC для достижения более широких углов обзора и исключения засветки при взгляде под углом. Этот тип панелей используется при создании профессиональных мониторов высокого качества.

IPS-Pro (IPS-Provectus) . Технология панелей IPS Alpha с более широкой цветовой гаммой и контрастностью, сравнимой с контрастностью PVA и ASV дисплеев без углового свечения.

AFFS (Advanced Fringe Field Switching, неофициальное название - S-IPS Pro) . Усиленная мощность электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК, на матрицах производства Hitachi Displays.

e-IPS (Enhanced IPS) использует более дешевые в производстве лампы подсветки, с более низким энергопотреблением. Улучшен диагональный угол обзора, время отклика уменьшено до 5 мс.

P-IPS (Professional IPS) обеспечивает 1,07 млрд цветов (30-битная глубина цвета). Больше возможных ориентаций для субпикселя (1024 против 256) и лучшая глубина true color-цветопередачи.

AH-IPS (Advanced High Performance IPS) . Улучшена цветопередача, увеличено разрешение и PPI, повышена яркость и понижено энергопотребление.

Технология PLS

PLS-матрица (Plane-to-Line Switching) была разработана компанией Samsung как альтернатива IPS и впервые продемонстрирована в декабре 2010 года.
Достоинства:

  • плотность пикселей выше по сравнению с IPS (и аналогична с *VA/TN);
  • высокая яркость и хорошая цветопередача;
  • большие углы обзора;
  • полное покрытие диапазона sRGB;
  • низкое энергопотребление, сравнимое с TN.

Недостатки:

  • время отклика (5–10 мс) сравнимо с S-IPS, лучше чем у *VA, но хуже чем у TN;

PLS и IPS

Компания Samsung не давала описания технологии PLS. Сделанные независимыми наблюдателями сравнительные исследования матриц IPS и PLS под микроскопом не выявили отличий. То, что PLS является разновидностью IPS, косвенно признала сама корпорация Samsung своим иском против корпорации LG: в иске утверждалось, что используемая LG технология AH-IPS является модификацией технологии PLS.