Тест манна уитни в статистике. Критерий U Манна — Уитни

Где T x - наибольшая сумма рангов, n x - наибольшая из объемов выборок n 1 и n 2 .

Назначение сервиса . С помощью данного онлайн-калькулятора производится расчет U критерия Манна-Уитни .

Назначение критерия

Критерий предназначен для оценки различий между двумя выборками по уровню какого-либо признака, количественно измеренного. Он позволяет выявлять различия между малыми выборками, когда n 1 , n 2 ≥ 3 или n 1 =2, n 2 ≥ 5. В каждой выборке должно быть не более 60 наблюдений.
Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами. Положим, что первым рядом (выборкой, группой) мы называем тот ряд значений, в котором значения, по предварительной оценке, выше, а вторым рядом - тот, где они предположительно ниже.
Чем меньше область перекрещивающихся значений, тем более вероятно, что различия достоверны. Иногда эти различия называют различиями в расположении двух выборок.
Эмпирическое значение критерия U отражает то, насколько велика зона совпадения между рядами. Поэтому чем меньше U эмп, тем более вероятно, что различия достоверны.

Гипотезы
H 0: Уровень признака в группе 2 не ниже уровня признака в группе 1.
H 1: Уровень признака в группе 2 ниже уровня признака в группе 1.

Алгоритм расчета критерия Манна-Уитни

  1. Объединить все данные в единый ряд, пометив данные, принадлежащие разным выборкам.
  2. Проранжировать значения , приписывая меньшему значению меньший ранг. Всего рангов получится (n 1 + n 2).
  3. Подсчитать сумму рангов отдельно для каждой выборки.
  4. Определить большую из двух ранговых сумм.
  5. Определить значение U по формуле:
    U = n 1 ·n 2 + n x ·(n x + 1)/2 – T x ,
    где n 1 – объем выборки №1; n 2 – объем выборки №2; T x – большая из двух ранговых сумм; n x – объем максимальной выборки: n x = max(n 1 , n 2).
  6. Определить критические значения U кр по таблице . Если U эмп > U кр (0,05). H 0 принимается. Если U эмп ≤ U кр (0,05) H 0 отвергается. Чем меньше значения U, тем достоверность различий выше.

Пример . У предполагаемых участников психологического эксперимента был измерен уровень вербального и невербального интеллекта с помощью методики Д. Векслера. Было обследовано две группы юношей в возрасте от 18 до 24 лет студентов физического факультета и психологического факультета. Показатели вербального интеллекта представлены в таблице. Можно ли утверждать, что одна из групп превосходит другую по уровню вербального интеллекта?

Ф П
135 130
130 129
131 121
128 129
127 119
137 124
126 125
137 129
131 129
137 130
137 131
127 123
133
125

Сравнение результатов показывает, что значения выборки X несколько выше, чем выборки Y, поэтому первой считаем выборку X.
Таким образом, нам требуется определить, можно ли считать имеющуюся разницу между баллами существенной.
Решение .
Проранжируем представленную таблицу. При ранжировании объединяем две выборки в одну. Ранги присваиваются в порядке возрастания значения измеряемой величины, т.е. наименьшему рангу соответствует наименьший балл. Заметим, что в случае совпадения баллов для нескольких учеников ранг такого балла следует считать, как среднее арифметическое тех позиций, которые занимают данные баллы при их расположении в порядке возрастания.
Так как в матрице имеются связанные ранги (одинаковый ранговый номер) 1-го ряда, произведем их переформирование. Переформирование рангов производиться без изменения важности ранга, то есть между ранговыми номерами должны сохраниться соответствующие соотношения (больше, меньше или равно). Также не рекомендуется ставить ранг выше 1 и ниже значения равного количеству параметров (в данном случае n = 26). Переформирование рангов производится в табл.
Номера мест в упорядоченном ряду Расположение факторов по оценке эксперта Новые ранги
1 119 1
2 121 2
3 123 3
4 124 4
5 125 5.5
6 125 5.5
7 126 7
8 127 8.5
9 127 8.5
10 128 10
11 129 12.5
12 129 12.5
13 129 12.5
14 129 12.5
15 130 16
16 130 16
17 130 16
18 131 19
19 131 19
20 131 19
21 133 21
22 135 22
23 137 24.5
24 137 24.5
25 137 24.5
26 137 24.5

Используя предложенный принцип ранжирования, получим таблицу рангов.
X Ранг X Y Ранг Y
125 5.5 119 1
126 7 121 2
127 8.5 123 3
127 8.5 124 4
128 10 125 5.5
130 16 129 12.5
131 19 129 12.5
131 19 129 12.5
133 21 129 12.5
135 22 130 16
137 24.5 130 16
137 24.5 131 19
137 24.5
137 24.5
Сумма 234.5 Сумма 116.5

Этих данных достаточно, чтобы воспользоваться формулой расчёта эмпирического значения критерия:

Гипотеза H 0 о незначительности различий между выборками принимается, если U кр < u эмп. В противном случае H 0 отвергается и различие определяется как существенное.
где U kp - критическая точка, которую находят по таблице Манна-Уитни.
Найдем критическую точку U kp
По таблице находим U kp (0.05) = 45
Так как U kp > u эмп - принимаем альтернативную гипотезу H 1 ; различия в уровнях выборок можно считать существенными.

Критерий U Манна - Уитни

Назначение критерия. Критерий предназначен для оценки различий между двумя выборками по уровню какого-либо признака, количественно измеренного. Он позволяет выявлять различия между малыми выборками, когда п 1, п 2 > 3 или п Л = 2, п 2 > 5, и является более мощным, чем критерий Q Розенбаума.

Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами. Мы помним, что 1-м рядом (выборкой, группой) мы называем тот ряд значений, в котором значения, по предварительной оценке, выше, а 2-м рядом - тот, где они предположительно ниже.

Чем меньше область перекрещивающихся значений, тем более вероятно, что различия достоверны. Иногда эти различия называют различиями в расположении двух выборок. Эмпирическое значение критерия и отражает то, насколько велика зона совпадения между рядами. Поэтому чем меньше t/ 3Mn , тем более вероятно, что различия достоверны.

Гипотезы.

Уровень невербального интеллекта в группе студентов физиков выше, чем в группе студентов-психологов.

Графическое представление критерия U. Па рис. 7.25 представлены три из множества возможных вариантов соотношения двух рядов значений.

В варианте (а) второй ряд ниже первого, и ряды почти не перекрещиваются. Область наложения (S j) слишком мала, чтобы скрадывать различия между рядами. Есть шанс, что различия между ними достоверны. Точно определить это мы сможем с помощью критерия U.

В варианте (б) второй ряд тоже ниже первого, но и область перекрещивающихся значений у двух рядов достаточно обширна (5 2). Она может еще не достигать критической величины, когда различия придется признать несущественными. Но так ли это, можно определить только путем точного подсчета критерия U.

В варианте (в) второй ряд ниже первого, но область наложения настолько обширна (5 3), что различия между рядами скрадываются.

Рис. 7.25.

в двух выборках

Примечание. Перекрытием (5 t , S 2 , *$з) обозначены зоны возможного наложения. Ограничения критерия U.

  • 1. В каждой выборке должно быть не менее трех наблюдений: n v п 2 > 3; допускается, чтобы в одной выборке было два наблюдения, но тогда во второй их должно быть не менее 5.
  • 2. В каждой выборке должно быть не более 60 наблюдений; п л, п 2 щ, п 2 > 20 ранжирование становится достаточно трудоемким.

Вернемся к результатам обследования студентов физического и психологического факультетов Ленинградского университета с помощью методики Д. Векслера для измерения вербального и невербального интеллекта. С помощью критерия Q Розенбаума было с высоким уровнем значимости определено, что уровень вербального интеллекта в выборке студентов физического факультета выше. Попытаемся установить теперь, воспроизводится ли этот результат при сопоставлении выборок по уровню невербального интеллекта. Данные приведены в таблице.

2 ниже уровня признака в выборке 1 на достоверно значимом уровне. Чем меньше значения U, тем достоверность различий выше.

Теперь проделаем всю эту работу на материале нашего примера. В результате работы по 1-6 шагам алгоритма построим таблицу (табл. 7.4).

Таблица 7.4

Подсчет ранговых сумм по выборкам студентов физического и психологического факультетов

Студенты-физики (п = 14)

Студенты-психологи (п= 12)

Показатель невербального интеллекта

Средние 107,2

Общая сумма рангов: 165 + 186 = 351. Расчетная сумма по формуле (5.1) такова:

Равенство реальной и расчетной сумм соблюдено. Мы видим, что по уровню невербального интеллекта более «высоким» рядом окалывается выборка студентов-психологов. Именно на эту выборку приходится большая ранговая сумма: 186. Теперь мы готовы сформулировать статистические гипотезы:

Я 0: группа студентов-психологов не превосходит группу студентов- физиков по уровню невербального интеллекта;

Я,: группа студентов-психологов превосходит группу студентов-физи- ков по уровню невербального интеллекта.

В соответствии со следующим шагом алгоритма определяем эмпирическую величину U :

Поскольку в нашем случае п л * п 2 , подсчитаем эмпирическую величину U и для второй ранговой суммы (165), подставляя в формулу (7.4) соответствующее ей п х.:

По приложению 8 определяем критические значения для п л = 14, п 2 = 12:

Мы помним, что критерий U является одним из двух исключений из общего правила принятия решения о достоверности различий, а именно, мы можем констатировать достоверные различия, если {/ эмп U Kp 0 05 (при ^эмп = 60, и шп > U Kf) о,05).

Следовательно, Н 0 принимается следующей: группа студентов-психологов не превосходит группы студентов-физиков по уровню невербального интеллекта.

Обратим внимание на то, что для данного случая Q-критерий Розенбаума неприменим, так как размах вариативности в группе физиков шире, чем в группе психологов: и самое высокое, и самое низкое значения невербального интеллекта приходятся на группу физиков (см. табл. 7.4).

Критерий в математической статистике - это строгое правило, в соответствии с которым гипотеза с определённым уровнем значимости принимается или отвергается. Чтобы построить его, необходимо найти определенную функцию. Она должна зависеть от конечных результатов эксперимента, то есть от эмпирически найденных значений. Именно эта функция будет являться инструментом оценки расхождения между выборками.

Статистически значимая величина. Общие сведения

Статистическая значимость - это величина, вероятность случайного возникновения которой очень мала. Незначительны также и более крайние ее показатели. Разницу называют статистически значимой в том случае, если существуют данные, вероятность появления которых незначительна, если утверждать, что эти расхождения не существуют. Но это не значит вовсе, что эта разница обязательно должна быть велика и значима.

Уровень статистической достоверности теста

Под данным термином следует понимать вероятность отклонения нулевой гипотезы в случае её истинности. Это также называется ошибкой первого рода или ложноположительным решением. В большинстве случаев процесс опирается на p-величину ("пи-величина"). Это накопленная вероятность при наблюдении за уровнем статистического критерия. Он, в свою очередь, насчитывается по выборке во время принятия нулевой гипотезы. Предположение будет отвергнуто, если эта p-величина будет меньше заявленного аналитиком уровня. От этого показателя зависит напрямую значимость тестовой величины: чем она меньше, тем, соответственно, и больше оснований отвергнуть гипотезу.

Уровень значимости, как правило, обозначается буквой б (альфа). Популярные показатели среди специалистов: 0,1%, 1%, 5% и 10%. Если, скажем, говорится, что шансы на совпадения равны 1 к 1000, то определённо речь идёт об уровне 0,1% статистической значимости случайной величины. Различные по значению б-уровни имеют свои плюсы и минусы. Если показатель меньше, то больше вероятность, что альтернативная гипотеза значимая. Хотя при этом возможен риск, что ложное нулевое предположение не будет отвергнуто. Можно сделать вывод, что выбор оптимального б-уровня зависит от баланса "значимость-мощность" или, соответственно, от компромисса вероятностей ложноположительного и ложноотрицательного решений. Синонимом "статистической значимости" в отечественной литературе является термин "достоверность".

Определение нулевой гипотезы

В математической статистике проверяемое на согласованность с уже имеющимися в запасе эмпирическими данными. В большинстве случаев в качестве нулевой гипотезы берётся гипотеза о том, что корреляция между исследуемыми переменными отсутствует или что в изучаемых распределениях нет различий однородности. При стандартных исследованиях математик пытается опровергнуть нулевую гипотезу, то есть доказать, что она не согласована с экспериментально полученными данными. Причем должно иметь место и альтернативное предположение, которое принимается вместо нулевого.

Ключевое определение

Критерий U (Манна-Уитни) в позволяет оценивать различия двух выборок. Они могут быть даны по уровню некоего признака, который измерен количественно. Этот метод идеален для оценки различий малых выборок. Этот простой критерий был предложен Фрэнком Уилкоксоном в 1945 году. А уже в 1947 году метод был пересмотрен и дополнен учёными Х. Б. Манном и Д. Р. Уитни, именами которых он и именуется по сей день. Критерий Манна-Уитни в психологии, математике, статистике и во многих других науках является одним из основополагающих элементов математического обоснования результатов теоретических исследований.

Описание

Критерий Манна-Уитни - относительно простой метод без параметров. Его мощность значительна. Она существенно выше, чем мощность Q-критерия Розенбаума. Метод оценивает, насколько мала область перекрёстных значений между выборками, а именно между ранжированными рядами значений первой и второй подборки. Чем значение критерия меньше, тем больше вероятность, что расхождения значений параметра достоверны. Чтобы корректно применить критерий U (Манна-Уитни), не стоит забывать о некоторых ограничениях. В каждой выборке должно быть как минимум 3 значения признака. Возможна ситуация, когда в одном случае значений два, но во втором обязательно тогда их должно быть хотя бы пять. В исследуемых выборках должно быть минимальное количество совпадающих показателей. Все числа должны быть разными в идеальном случае.

Использование

Как правильно использовать критерий Манна-Уитни? Таблица, которая составлена по данному методу, содержит определенные критические значения. Для начала нужно создать единый ряд из обеих сопоставленных выборок, который затем ранжируется. То есть элементы выстраиваются по степени нарастания признака, и меньший ранг присваивается меньшему значению. В итоге получим такое общее число рангов:

N = N1 + N2,

где величины N1 и N2 - количество единиц, содержащихся в первой и второй выборках соответственно. Далее единый ранжированный ряд значений делится на две категории. Единицы, соответственно, из первой и второй выборок. Теперь считается по очереди сумма рангов значений в первом и во втором рядах. Определяется большая из них (Tx), которая соответствует выборке с nx единицами. Чтобы использовать метод Уилкоксона далее, вычисляется его значение по следующей методике. Необходимо по таблице для выбранного уровня значимости выяснить критическое значение этого критерия для конкретно взятых N1 и N2.

Получившийся показатель может быть меньше или равен значению из таблицы. В этом случае констатируется значительное различие уровней признака в исследуемых выборках. Если полученное значение больше табличного, тогда нулевая гипотеза принимается. Когда производится расчет критерия Манна-Уитни, следует заметить, что если нулевая гипотеза справедлива, критерий будет иметь а также дисперсию. Отметим, что при достаточно больших объёмах данных выборок метод считается практически нормально распределенным. Достоверность различий тем выше, чем меньшее значение принимает критерий Манна-Уитни.

Критерий Манна-Уитни U-критерий Манна-Уитни используется для оценки различий между двумя малыми выборками (n 1 ,n 2 ≥3 или n 1 =2, n 2 ≥5) по уровню количественно измеряемого признака. При этом первой выборкой принято считать ту, где значение признака больше. Нулевая гипотеза H 0 ={уровень признака во второй выборке не ниже уровня признака в первой выборке}; альтернативная гипотеза – H 1 ={уровень признака во второй выборке ниже уровня признака в первой выборке}. Рассмотрим алгоритм применения U-критерия Манна-Уитни: 1. Перенести все данные испытуемых на индивидуальные карточки, пометив карточки 1-й выборки одним цветом, а 2-й – другим. 2. Разложить все карточки в единый ряд по степени возрастания признака и проранжировать в таком порядке. 3. Вновь разложить карточки по цвету на две группы. 4. Подсчитать сумму рангов отдельно по группам и проверить, совпадает ли общая сумма рангов с расчетной. 5. Определить большую из двух ранговых сумм . 6. Вычислить эмпирическое значение U : , где - количество испытуемых в - выборке (i = 1, 2), - количество испытуемых в группе с большей суммой рангов. 7. Задать уровень значимости α и, используя специальную таблицу, определить критическое значение U кр (α) . Если , то H 0 на выбранном уровне значимости принимается. Рассмотрим использование U критерия Манна-Уитни на примере. Проведение срезовой контрольной работы по математике (алгебра и геометрия) в средней общеобразовательной школе дало следующие результаты по 10-балльной шкале для класса, обучающегося по программе «Развивающего обучения» (7 «Б»), и класса, обучающегося по традиционной системе (7 «А»):

Определите, превосходят ли учащиеся 7 «Б» учащихся 7 «А» по уровню знаний по математике.

Сравнение результатов показывает, что баллы, полученный за контрольную работу, в 7 «Б» классе несколько выше, поэтому первой считаем выборку результатов 7 «Б» класса. Таким образом, нам требуется определить, можно ли считать имеющуюся разницу между баллами существенной. Если можно, то это будет означать, что класс, обучающийся по системе «развивающего обучения» имеет более качественные знания по математике. В противном случае, на выбранном уровне значимости различие окажется несущественным.

Для оценки различий между двумя малыми выборками (в данном примере их объёмы равны: n 1 =12, n 2 =11) используем критерий Манна-Уитни. Проранжируем представленную таблицу:

7 «Б» (баллы) ранг 7 «А» (баллы) ранг
22,5
22,5 20.5
20.5 16.5
16.5 16.5
16.5 11.5
16.5 11.5
16.5 7.5
11.5 7.5
11.5 7.5
7.5 4.5
4.5
Сумма: 168.5 Сумма: 107.5

При ранжировании объединяем две выборки в одну. Ранги присваиваются в порядке возрастания значения измеряемой величины, т.е. наименьшему рангу соответствует наименьший балл. Заметим, что в случае совпадения баллов для нескольких учеников ранг такого балла следует считать, как среднее арифметическое тех позиций, которые занимают данные баллы при их расположении в порядке возрастания. Например, 4 балла получили 3 ученика (см. таблицу). Значит, первые 3 позиции в расположении займёт балл, равный 4. Поэтому ранг для 4 баллов – это среднее арифметическое для позиций 1, 2 и 3, или: . Аналогично рассуждаем при вычислении ранга для балла, равного 5. Такой балл получили двое учащихся. Значит, при распределении по возрастанию первые три позиции занимает балл, равный 4, а четвёртую и пятую позиции займёт балл, равный 5. Поэтому его ранг будет равен среднему арифметическому между числами 4 и 5, т.е. 4.5.

Используя предложенный принцип ранжирования, получим таблицу рангов. Заметим, что выбор среднего арифметического в качестве ранга применяется при любом ранжировании, в том числе необходимого и для вычисления других критериев достоверности или же коэффициента корреляции Спирмена.

Чтобы использовать критерий Манна-Уитни, рассчитаем суммы рангов рассматриваемых выборок (см. таблицу). Сумма для первой выборки равна 168,5, для второй – 107,5. Обозначим наибольшую из этих сумм через T x (T x =168.5). Среди объёмов n 1 и n 2 выборок наибольший обозначим n x . Этих данных достаточно, чтобы воспользоваться формулой расчёта эмпирического значения критерия:

T x =168,5, n x =12>11=n 2 . Тогда:

Критическое значение критерия находим по специальной таблице. Пусть уровень значимости равен 0.05.

Гипотеза H 0 о незначительности различий между баллами двух классов принимается, если u кр

Следовательно, различия в уровне знаний по математике среди учащихся можно считать несущественными.

Схема использования критерия Манна-Уитни выглядит следующим образом

В этой статье Вы узнаете, почему кроме t-теста существуют другие методы сравнения двух выборок. Начнем мы с того, что вспомним о нормальности данных и связанной с ней делением статистических тестов на две категории: параметрические и непараметрические. О последних мы поговорим более подробно: разберем три наиболее популярных теста, а также научимся их запускать в среде R.

Параметрический или непараметрический критерий различия?

Статистические методы, использующие параметры нормального распределения данных (среднее, стандартное отклонение и прочее) называются параметрическими . Так например, рассмотренный в предыдущей статье является типичным параметрическим методом. Почему? Потому, что главным условием для его проведения является нормальное распределение количественных данных. Непараметрические методы, напротив, не зависят от распределения данных и позволяют работать как с количественными, так и с порядковыми данными (например: размер обуви, шкала силы землетрясений).

При нормальном распределении данных параметрические критерии имеют большую мощность по сравнению с непараметрическими. Однако, когда данные выборок не проходят тесты нормальности (такие, как qqplot и Шапиро тест), непараметрические методы дают более точные предсказания. Особенно они эффективны с выборками небольшого размера (<100 наблюдений), на распределение которых могут влиять неизвестные факторы. Сегодня мы познакомимся с непараметрическими аналогами t-теста, использующимися также, для сравнения двух выборок. При выборе критерия следует обратить внимание на две вещи: зависимость данных выборок друг от друга и объем выборок.

На приведенном выше рисунке Вы видите упрощенную классификацию методов сравнения средних (или медиан) двух выборок. Мы кратко поговорим о каждом из непараметрических критериев, и научимся применять их в среде R. Чтож, приступим!

Критерий Уилкоксона

Начнем знакомство с непараметрических тестов для зависимых выборок. Прежде всего стоит отметить, что выборки называются зависимыми, когда испытуемые одной и той же группы были протестированы в разные моменты времени с меняющимися (1) или неменяющимися (2) условиями эксперимента. В первом случае проверяется эффект какого либо действия в сравнении с контрольным измерением ("до и после"), во втором - повторяемость результатов эксперимента ("контроль-повтор").

Тест Уилкоксона (от английского "Wilcoxon signed-rank test") является широко используемым и эффективным методом выявления различий между медианами двух зависимых выборок с распределением данных отличным от нормального. Он идеально подходит для сравнения маленьких выборок, где количество испытуемых/исследований больше 5, но меньше 50. Как и для всех критериев, рассмотренных в этой статье, данные могут быть как количественными, так и порядковыми. Метод был разработан в 1945 году американским статистиком и химиком Фрэнком Уилкоксоном (фото справа).

Чтобы запустить тест Уилкоксона в среде R следует загрузить данные выборок и ввести следующую команду:

wilcox.test("выборка_1", "выборка_2" , paired = T)

Как и в t-тесте, в непараметрических статистических тестах внутри скобок можно добавить дополнительные параметры, такие как alternative , conf.int , conf.level . Чтобы посмотреть все аргументы функции, поставьте перед ней знак вопроса, в нашем случае: ?wilcox.test

G-критерий знаков

Если же количество исследований в выборке больше 50, то следует использовать G-критерий знаков. Критерий знаков по статистической мощности уступает Уилкоксону, но превосходит большинство других непараметрических аналогов. Данные выборок должны быть зависимыми, количество исследований в выборке от 5, но не более 300 (про механизм расчетов и ограничения метода можно почитать ).

Провести тест в R не сложно, но потребуется сделать несколько манипуляций с данными. Сначала мы загрузим данные двух зависимых выборок, например систолическое (верхнее) давление до и после применения лекарства у 60 пациентов-гипертоников. Загрузим данные "before" и "after" в среду R. Затем визуализируем их.

before <- c(171.2, 169.8, 154.6, 130.9, 158.5, 145.5, 143.5, 144.7, 147.7, 160.7, 154.7, 181.8, 167.2, 137.4, 180.2, 138.7, 159.9, 141.8, 172.2, 167.0, 137.2, 170.9, 168.4, 163.7, 160.1, 163.5, 146.7, 173.9, 180.1, 136.0, 159.0, 145.6, 186.5, 177.7, 167.7, 167.4, 165.9, 147.2, 165.2, 133.3, 175.0, 174.7, 163.0, 154.1, 189.4, 166.5, 153.0, 134.3, 177.1, 150.4, 152.4, 176.2, 160.3, 135.3, 131.2, 172.1, 137.0, 156.6, 178.5, 168.1) after <- c(179.5, 141.9, 124.7, 103.2, 143.1, 146.0, 132.2, 104.9, 145.3, 123.5, 135.2, 176.2, 142.7, 114.1, 171.9, 115.0, 126.4, 108.0, 171.7, 148.8, 103.5, 178.5, 138.9, 150.0, 131.8, 169.2, 131.4, 138.8, 146.2, 116.1, 148.8, 109.2, 186.3, 164.1, 147.3, 165.3, 140.0, 122.6, 174.4, 104.6, 156.6, 175.3, 126.8, 122.6, 184.0, 139.6, 149.4, 105.3, 181.9, 134.6, 129.4, 148.0, 170.2, 144.2, 133.3, 171.8, 118.4, 131.2, 150.0, 131.0) boxplot(before, after, col = c(6,5), main = "The effect of treatment", outer = TRUE) axis(1, at=1:2, labels=c("before","after"))

Затем найдем разность между векторами "before" и "after" и назовем новый вектор "difference", после чего при помощи команды length узнаем его длину. Так как нас интересует, снижает ли лекарство давление у пациентов, мы узнаем какое количество элементов в векторе "difference" больше нуля. Это количество принято называть числом "успехов".

difference <- before - after difference length(difference) length(difference)

Теперь все готово для того, чтобы запустить G-критерий знаков в R. Для этого воспользуемся командой binom.test , где в параметрах функции укажем сначала число "успехов", затем число исследований в выборке.

binom.test(50, 60)

Нулевая гипотеза говорит о том, что медианы выборок статистически не отличаются, альтернативная - что статистические различия есть. В нашем случае p-value значительно меньше 0.05, поэтому мы можем с уверенностью отвергнуть нулевую гипотезу и принять альтернативую: две выборки статистически отличаются друг от друга. Также мы видим, что у 83% пациентов давление снизилось. Для демонстрации статистической значимости результатов эксперимента, просто добавьте к графику надпись p-value < 0.001.

Критерий Манна-Уитни

Этот тест также был изначально разработан и опубликован Уилкоксоном в 1945 году. Однако спустя два года его существенно усовершенствовали два математика, в честь которых и был назван критерий. В отличие от двух предыдущих критериев, тест Манна-Уитни используется при сравнении двух независимых выборок , также имеющих отклонения от нормального распределения. Подробнее об алгоритме расчета данного критерия можете почитать в этой статье .

Запустить тест Манна-Уитни в R крайне просто, используем уже известную нам функцию "wilcox.test" и убираем из скобок "paired = T":

wilcox.test("выборка_1", "выборка_2" )

Однако при проведении этого метода необходимо соблюдать два условия. Во-первых, одинаковые значения в выборке должны быть сведены к минимуму (все числа должны быть разными). Во-вторых, в каждой выборке должно быть не менее трех исследований (минимум 3 и 3, также допускается 5 и 2).

Заключение

Непараметрических методов существует великое множество, сегодня мы познакомились лишь с тремя наиболее используемыми критериями для сравнения двух выборок. В среде R эти тесты запустить довольно просто, поэтому главный акцент в выборе метода следует делать на его пригодность к решению конкретно Вашей задачи.