Что такое АЭС, ТЭЦ и ТЭС? Организационная структура управления тэц и основные функции персонала.

ТЭЦ — тепловая электростанция, которая производит не только электроэнергию, но и дает тепло в наши дома зимой. На примере Красноярской ТЭЦ посмотрим как работает почти любая теплоэлектростанция.

В Красноярске есть 3 теплоэлектроцентрали, суммарная электрическая мощность которых всего 1146 МВт (для сравнения, одна только наша Новосибирская ТЭЦ 5 имеет мощность 1200 МВт), но примечательна была для меня именно Красноярская ТЭЦ-3 тем, что станция новая - ещё не прошло и года, как первый и пока единственный энергоблок был аттестован Системным оператором и введён в промышленную эксплуатацию. Поэтому мне удалось поснимать ещё не запылившуюся, красивую станцию и узнать много нового для себя о ТЭЦ.

В этом посте, помимо технической информации о КрасТЭЦ-3, я хочу раскрыть сам принцип работы почти любой теплоэлектроцентрали.

1. Три дымовые трубы, высота самой высокой из них 275 м, вторая по высоте - 180м



Сама аббревиатура ТЭЦ подразумевает собой, что станция вырабатывает не только электричество, но и тепло (горячая вода, отопление), причем, выработка тепла возможно даже более приоритетна в нашей известной суровыми зимами стране.

2. Установленная электрическая мощность Красноярской ТЭЦ-3 208 МВт, а установленная тепловая мощность 631,5 Гкал/ч

Упрощенно принцип работы ТЭЦ можно описать следующим образом:

Всё начинается с топлива. В роли топлива на разных электростанциях могут выступать уголь, газ, торф, горючие сланцы. В нашем случае это бурый уголь марки Б2 с Бородинского разреза, расположенного в 162 км от станции. Уголь привозят по железной дороге. Часть его складируется, другая часть идёт по конвеерам в энергоблок, где сам уголь сначала измельчается до пыли и потом подаётся в камеру сгорания - паровой котёл.

Паровой котёл - это агрегат для получения пара с давлением выше атмосферного из непрерывно поступающей в него питательной воды. Происходит это засчет теплоты, выделяющейся при сгорании топлива. Сам котёл выглядит довольно внушительно. На КрасТЭЦ-3 высота котла 78 метров (26-этажный дом), а весит он более 7000 тонн.

6. Паровой котёл марки Еп-670, произведенный в Таганроге. Производительность котла 670 тонн пара в час

Я позаимствовал с сайта energoworld.ru упрощённую схему парового котла электростанции, чтобы вам было понятно его устройтсво

1 — топочная камера (топка); 2 — горизонтальный газоход; 3 — конвективная шахта; 4 — топочные экраны; 5 — потолочные экраны; 6 — спускные трубы; 7 — барабан; 8 — радиационно-конвективный пароперегреватель; 9 — конвективный пароперегреватель; 10 — водяной экономайзер; 11 — воздухоподогреватель; 12 — дутьевой вентилятор; 13 — нижние коллекторы экранов; 14 — шлаковый комод; 15 — холодная коронка; 16 — горелки. На схеме не показаны золоуловитель и дымосос.

7. Вид сверху

10. Отчётливо виден барабан котла. Барабан представляет собой цилиндрический горизонтальный сосуд, имеющий водяной и паровой объемы, которые разделяются поверхностью, называемой зеркалом испарения.

Благодаря большой паропроизводительности котёл имеет развитые поверхности нагрева, как испарительные, так и пароперегревательные. Топка у него призматическая, четырёхугольная с естественной циркуляцией.

Пара слов о принципе работы котла:

В барабан, проходя экономайзер, попадает питательная вода, по спускным трубам спускается в нижние коллекторы экранов из труб, по этим трубам вода поднимается вверх и, соответственно, нагревается, так как внутри топки горит факел. Вода превращается в паро-водяную смесь, часть её попадает в выносные циклоны и другая часть обратно барабан. И там, и там происходит разделение этой смеси на воду и пар. Пар уходит в пароперегреватели, а вода повторяет свой путь.

11. Остывшие дымовые газы (примерно 130 градусов), выходят из топки в электрофильтры. В электрофильтрах происходит очистка газов от золы, зола удаляется на золоотвал, а очищенные дымовые газы уходят в атмосферу. Эффективная степень очистки дымовых газов составляет 99,7%.
На фотографии те самые электрофильтры.

Проходя через пароперегреватели пар нагревается до температуры 545 градусов и поступает в турбину, где под его давлением вращается ротор турбогенератора и, соответственно, вырабатывается электроэнергия. Следует отметить, что в конденсационных электростанциях (ГРЭС) система обращения воды полностью замкнута. Весь пар, проходя сквозь турбину, охлаждается и конденсируется. Снова превратившись в жидкое состояние, вода используется заново. А в турбинах ТЭЦ не весь пар попадает в конденсатор. Осуществляются отборы пара - производственные (использование горячего пара на каких-либо производствах) и теплофикационные (сеть горячего водоснабжения). Это делает ТЭЦ экономически более выгодной, но у неё есть свои минусы. Недостатком теплоэлектроцентралей является то, что они должны быть построены недалеко от конечного потребителя. Прокладка теплотрасс стоит огромных денег.

12. На Красноярской ТЭЦ-3 используется прямоточная система технического водоснабжения, это позволяет отказаться от использование градирен. То есть воду для охлаждения конденсатора и использования в котле берут прямо из Енисея, но перед этим она проходит очистку и обессоливание. После использования вода возвращается по каналу обратно в Енисей, проходя систему рассеивающего выпуска (перемешивание нагретой воды с холодной, дабы снизить тепловое загрязнение реки)

14. Турбогенератор

Я надеюсь, мне удалось внятно описать принцип работы ТЭЦ. Теперь немного о самой КрасТЭЦ-3.

Строительство станции началось ещё в далёком 1981 году, но, как у нас в России бывает, из-за развалов СССР и кризисов построить ТЭЦ вовремя не получилось. С 1992 г до 2012 г станция работала как котельная - нагревала воду, но электричество вырабатывать научилась только 1-го марта прошлого года.

Красноярская ТЭЦ-3 принадлежит Енисейской ТГК-13. На ТЭЦ работает около 560 человек. В настоящее время Красноярская ТЭЦ-3 обеспечивает теплоснабжение промышленных предприятий и жилищно-коммунального сектора Советского района г. Красноярска - в частности, микрорайоны «Северный», «Взлётка», «Покровский» и «Иннокентьевский».

17.

19. ЦПУ

20. Ещё на КрасТЭЦ-3 функционируют 4 водогрейных котла

21. Глазок в топке

23. А это фото снято с крыши энергоблока. Большая труба имеет высоту 180м, та что поменьше - труба пусковой котельной.

24. Трансформаторы

25. В качестве распределительного устройства на КрасТЭЦ-3 используется закрытое распределительное устройство с элегазовой изоляцией (ЗРУЭ) на 220 кВ.

26. Внутри здания

28. Общий вид распределительного устройства

29. На этом всё. Спасибо за внимание

Электрической станцией называется комплекс оборудования, предназначенного для преобразования энергии какого-либо природного источника в электричество или тепло. Разновидностей подобных объектов существует несколько. К примеру, часто для получения электричества и тепла используются ТЭС.

Определение

ТЭС — это э лектростанция, применяющая в качестве источника энергии какое-либо органическое топливо. В качестве последнего может использоваться, к примеру, нефть, газ, уголь. На настоящий момент тепловые комплексы являются самым распространенным видом электростанций в мире. Объясняется популярность ТЭС прежде всего доступностью органического топлива. Нефть, газ и уголь имеются во многих уголках планеты.

ТЭС — это (расшифровка с амой аббревиатуры выглядит как "тепловая электростанция"), помимо всего прочего, комплекс с довольно-таки высоким КПД. В зависимости от вида используемых турбин этот показатель на станциях подобного типа может быть равен 30 - 70%.

Какие существуют разновидности ТЭС

Классифицироваться станции этого типа могут по двум основным признакам:

  • назначению;
  • типу установок.

В первом случае различают ГРЭС и ТЭЦ. ГРЭС — это станция, работающая за счет вращения турбины под мощным напором струи пара. Расшифровка аббревиатуры ГРЭС — государственная районная электростанция — в настоящий момент утратила актуальность. Поэтому часто такие комплексы называют также КЭС. Данная аббревиатура расшифровывается как "конденсационная электростанция".

ТЭЦ — это также довольно-таки распространенный вид ТЭС. В отличие от ГРЭС, такие станции оснащаются не конденсационными, а теплофикационными турбинами. Расшифровывается ТЭЦ как "теплоэнергоцентраль".

Помимо конденсационных и теплофикационных установок (паротурбинных), на ТЭС могут использоваться следующие типы оборудования:

  • парогазовые.

ТЭС и ТЭЦ: различия

Часто люди путают эти два понятия. ТЭЦ, по сути, как мы выяснили, является одной из разновидностей ТЭС. Отличается такая станция от других типов ТЭС прежде всего тем, что часть вырабатываемой ею тепловой энергии идет на бойлеры, установленные в помещениях для их обогрева или же для получения горячей воды.

Также люди часто путают названия ГЭС и ГРЭС. Связано это прежде всего со сходством аббревиатур. Однако ГЭС принципиально отличается от ГРЭС. Оба этих вида станций возводятся на реках. Однако на ГЭС, в отличие от ГРЭС, в качестве источника энергии используется не пар, а непосредственно сам водяной поток.

Какие предъявляются требования к ТЭС

ТЭС — это тепловая электрическая станция, на которой выработка электроэнергии и ее потребление производятся одномоментно. Поэтому такой комплекс должен полностью соответствовать ряду экономических и технологических требований. Это обеспечит бесперебойное и надежное обеспечение потребителей электроэнергией. Так:

  • помещения ТЭС должны иметь хорошее освещение, вентиляцию и аэрацию;
  • должна быть обеспечена защита воздуха внутри станции и вокруг нее от загрязнения твердыми частицами, азотом, оксидом серы и т. д.;
  • источники водоснабжения следует тщательно защищать от попадания в них сточных вод ;
  • системы водоподготовки на станциях следует обустраивать безотходные.

Принцип работы ТЭС

ТЭС — это электростанция , на которой могут использоваться турбины разного типа. Далее рассмотрим принцип работы ТЭС на примере одного из самых распространенных ее типов — ТЭЦ. Осуществляется выработка энергии на таких станциях в несколько этапов:

    Топливо и окислитель поступают в котел. В качестве первого в России обычно используется угольная пыль. Иногда топливом ТЭЦ могут служить также торф, мазут, уголь, горючие сланцы, газ. Окислителем в данном случае выступает подогретый воздух.

    Образовавшийся в результате сжигания топлива в котле пар поступает в турбину. Назначением последней является преобразование энергии пара в механическую.

    Вращающиеся валы турбины передают энергию на валы генератора, преобразующего ее в электрическую.

    Охлажденный и потерявший часть энергии в турбине пар поступает в конденсатор. Здесь он превращается в воду, которая подается через подогреватели в деаэратор.

    Деаэ рированная вода подогревается и подается в котел.

    Преимущества ТЭС

    ТЭС — это, таким образом, станция, основным типом оборудования на которой являются турбины и генераторы. К плюсам таких комплексов относят в первую очередь:

  • дешевизну возведения в сравнении с большинством других видов электростанций;
  • дешевизну используемого топлива;
  • невысокую стоимость выработки электроэнергии.

Также большим плюсом таких станций считается то, что построены они могут быть в любом нужном месте, вне зависимости от наличия топлива. Уголь, мазут и т. д. могут транспортироваться на станцию автомобильным или железнодорожным транспортом.

Еще одним преимуществом ТЭС является то, что они занимают очень малую площадь в сравнении с другими типами станций.

Недостатки ТЭС

Разумеется, есть у таких станций не только преимущества. Имеется у них и ряд недостатков. ТЭС — это комплексы, к сожалению, очень сильно загрязняющие окружающую среду. Станции этого типа могут выбрасывать в воздух просто огромное количество копоти и дыма. Также к минусам ТЭС относят высокие в сравнении с ГЭС эксплуатационные расходы. К тому же все виды используемого на таких станциях топлива относятся к невосполнимым природным ресурсам.

Какие еще виды ТЭС существуют

Помимо паротурбинных ТЭЦ и КЭС (ГРЭС), на территории России работают станции:

    Газотурбинные (ГТЭС). В данном случае турбины вращаются не от пара, а на природном газу. Также в качестве топлива на таких станциях могут использоваться мазут или солярка. КПД таких станций, к сожалению, не слишком высок (27 - 29%). Поэтому используют их в основном только как резервные источники электроэнергии или же предназначенные для подачи напряжения в сеть небольших населенных пунктов.

    Парогазотурбинные (ПГЭС). КПД таких комбинированных станций составляет примерно 41 - 44%. Передают энергию на генератор в системах этого типа одновременно турбины и газовые, и паровые. Как и ТЭЦ, ПГЭС могут использоваться не только для собственно выработки электроэнергии, но и для отопления зданий или же обеспечения потребителей горячей водой.

Примеры станций

Итак, достаточно производительным и в какой-то мере даже универсальным объектом может считаться любая ТЭС, электростанция. Примеры таких комплексов представляем в списке ниже.

    Белгородская ТЭЦ. Мощность этой станции составляет 60 МВт. Турбины ее работают на природном газе.

    Мичуринская ТЭЦ (60 МВт). Этот объект также расположен в Белгородской области и работает на природном газе.

    Череповецкая ГРЭС. Комплекс находится в Волгоградской области и может работать как на газу, так и на угле. Мощность этой станции равна целых 1051 МВт.

    Липецкая ТЭЦ -2 (515 МВТ). Работает на природном газе.

    ТЭЦ-26 «Мосэнерго» (1800 МВт).

    Черепетская ГРЭС (1735 Мвт). Источником топлива для турбин этого комплекса служит уголь.

Вместо заключения

Таким образом, мы выяснили, что представляют собой тепловые электростанции и какие существуют разновидности подобных объектов. Впервые комплекс этого типа был построен очень давно — в 1882 году в Нью-Йорке. Через год такая система заработала в России — в Санкт-Петербурге. Сегодня ТЭС — это разновидность электростанций, на долю которых приходится порядка 75% всей вырабатываемой в мире электроэнергии. И по всей видимости, несмотря на ряд минусов, станции этого типа еще долго будут обеспечивать население электроэнергией и теплом. Ведь достоинств у таких комплексов на порядок больше, чем недостатков.

Однажды, когда мы въезжали в славный город Чебоксары, с восточного направления моя супруга обратила внимание на две огромные башни, стоящие вдоль шоссе. «А что это такое?» – спросила она. Поскольку мне абсолютно не хотелось показать жене свою неосведомленность, я немного покопался в своей памяти и выдал победное: «Это ж градирни, ты что, не знаешь?». Она немного смутилась: «А для чего они нужны?» «Ну что-то там охлаждать, вроде бы». «А чего?». Потом смутился я, потому что совершенно не знал как выкручиваться дальше.

Может быть этот вопрос так и остался навсегда в памяти без ответа, но чудеса случаются. Через несколько месяцев после этого случая, вижу в своей френдленте пост о наборе блогеров, желающих посетить Чебоксарскую ТЭЦ-2, ту самую, что мы видели с дороги. Приходиться резко менять все свои планы, упустить такой шанс будет непростительно!

Так что же такое ТЭЦ?

Согласно Википедии ТЭЦ – сокращенное от теплоэлектроцентраль – это разновидность тепловой станции, которая производит не только электроэнергию, но и является источником тепла, в виде пара или горячей воды.

О том как все устроено, я расскажу ниже, а здесь можно посмотреть парочку упрощенных схем работы станции.

Итак, все начинается с воды. Поскольку вода (и пар, как её производное) на ТЭЦ является основным теплоносителем, перед тем как она попадет в котел, её необходимо предварительно подготовить. Для того, что бы в котлах не образовывалась накипь, на первом этапе, воду необходимо умягчить, а на втором, очистить её от всевозможных примесей и включений.

Происходит все это на территории химического цеха, в котором расположены все эти емкости и сосуды.

Вода перекачивается огромными насосами.

Работа цеха контролируется отсюда.

Вокруг много кнопочек…

Датчиков…

А также совсем непонятных элементов…

Качество воды проверяется в лаборатории. Здесь все по-серьезному…

Полученную здесь воду, в дальнейшем мы будем называть «Чистой водой».

Итак, с водой разобрались, теперь нам нужно топливо. Обычно это газ, мазут или уголь. На Чебоксарской ТЭЦ-2 основным видом топлива является газ, поступающий по магистральному газопроводу Уренгой – Помары – Ужгород. На многих станциях существует пункт подготовки топлива. Здесь природный газ, так же как и вода очищается от механических примесей, сероводорода и углекислого газа.

ТЭЦ – объект стратегический, работающий 24 часа в сутки и 365 дней в году. Поэтому здесь везде, и на всё, есть резерв. Топливо не является исключением. В случае отсутствия природного газа, наша станция может работать на мазуте, который хранится в огромных емкостях, расположенных через дорогу.

Теперь мы получили Чистую воду и подготовленное топливо. Следующий пункт нашего путешествия – котлотурбинный цех.

Состоит он из двух отделений. В первом находятся котлы. Нет, не так. В первом находятся КОТЛЫ. По другому написать, рука не поднимается, каждый, с двенадцатиэтажный дом. Всего на ТЭЦ-2 их пять штук.

Это сердце ТЭЦ, и здесь происходит основное действие. Газ, поступающий в котел, сгорает, выделяя сумасшедшее количество энергии. Сюда же подается «Чистая вода». После нагрева она превращается в пар, точнее в перегретый пар, имеющий температуру на выходе 560 градусов, а давление 140 атмосфер. Мы тоже назовем его «Чистый пар», потому что он образован из подготовленной воды.

Кроме пара, на выходе мы еще имеем выхлоп. На максимальной мощности, все пять котлов потребляют почти 60 кубометров природного газа в секунду! Чтобы вывести продукты сгорания, нужна недетская «дымовая» труба. И такая тоже имеется.

Трубу видно практически из любого района города, учитывая высоту 250 метров. Подозреваю, что это самое высокое строение в Чебоксарах.

Рядом находится труба чуть поменьше. Снова резерв.

Если ТЭЦ работает на угле, необходима дополнительная очистка выхлопа. Но в нашем случае этого не требуется, так как в качестве топлива используется природный газ.

В втором отделении котлотурбинного цеха находятся установки, вырабатывающие электроэнергию.

В машинном зале Чебоксарской ТЭЦ-2 их установлено четыре штуки, общей мощностью 460 МВт (мегаватт). Именно сюда подается перегретый пар из котельного отделения. Он, под огромным давлением направляется на лопатки турбины, заставляя вращаться тридцатитонный ротор, со скоростью 3000 оборотов в минуту.

Установка состоит из двух частей: собственно сама турбина, и генератор, вырабатывающий электроэнергию.

А вот как выглядит ротор турбины.

Повсюду датчики и манометры.

И турбины, и котлы, в случае аварийной ситуации можно остановить мгновенно. Для этого существуют специальные клапаны, способные перекрыть подачу пара или топлива за какие-то доли секунды.

Интересно, а есть такое понятие как промышленный пейзаж, или промышленный портрет? Здесь есть своя красота.

В помещении стоит страшный шум, и чтобы расслышать соседа приходиться сильно напрягать слух. К тому же очень жарко. Хочется снять каску и раздеться до футболки, но делать этого нельзя. По технике безопасности, одежда с коротким рукавом на ТЭЦ запрещена, слишком много горячих труб.

Основную часть времени цех пустой, люди здесь появляются один раз в два часа, во время обхода. А управление работой оборудования ведется с ГрЩУ (Групповые щиты управления котлами и турбинами).

Вот так выглядит рабочее место дежурного.

Вокруг сотни кнопок.

И десятки датчиков.

Есть механические, есть электронные.

Это у нас экскурсия, а люди работают.

Итого, после котлотурбинного цеха, на выходе мы имеем электроэнергию и частично остывший и потерявший часть давления пар. С электричеством вроде бы попроще. На выходе с разных генераторов напряжение может быть от 10 до 18 кВ (киловольт). С помощью блочных трансформаторов оно повышается до 110 кВ, а дальше электроэнергию можно передавать на большие расстояния с помощью ЛЭП (линий электропередач).

Оставшийся «Чистый пар» отпускать на сторону невыгодно. Так как он образован из «Чистой воды», производство которой довольно сложный и затратный процесс, его целесообразней охладить и вернуть обратно в котел. И так по замкнутому кругу. Зато с его помощью и с помощью теплообменников можно нагреть воду или произвести вторичный пар, которые спокойно продавать сторонним потребителям.

В общем-то именно таким образом мы с вами получаем тепло и электричество в свои дома, имея привычный комфорт и уют.

Ах, да. А для чего же все-таки нужны градирни?

Тепловые электростанции могут быть с паровыми и газовыми турбинами, с двигателями внутреннего сгорания. Наиболее распространены тепловые станции с паровыми турбинами, которые в свою очередь подразделяются на: конденсационные (КЭС) — весь пар в которых, за исключением небольших отборов для подогрева питательной воды, используется для вращения турбины, выработки электрической энергии;теплофикационные электростанции - теплоэлектроцентрали (ТЭЦ), являющиеся источником питания потребителей электрической и тепловой энергии и располагающиеся в районе их потребления.

Конденсационные электростанции

Конденсационные электростанции часто называют государственными районными электрическими станциями (ГРЭС). КЭС в основном располагаются вблизи районов добычи топлива или водоемов, используемых для охлаждения и конденсации пара, отработавшего в турбинах.

Характерные особенности конденсационных электрических станции

  1. в большинстве своем значительная удаленность от потребителей электрической энергии, что обуславливает необходимость передавать электроэнергию в основном на напряжениях 110-750 кВ;
  2. блочный принцип построения станции, обеспечивающий значительные технико-экономические преимущества, заключающиеся в увеличении надежности работы и облегчении эксплуатации, в снижении объема строительных и монтажных работ.
  3. Механизмы и установки, обеспечивающие нормальное функционирование станции, составляют систему ее .

КЭС могут работать на твердом (уголь, торф), жидком (мазут, нефть) топливе или газе.

Топливоподача и приготовление твердого топлива заключается в транспортировке его из складов в систему топливоприготовления. В этой системе топливо доводится до пылевидного состояния с целью дальнейшего вдувания его к горелкам топки котла. Для поддержания процесса горения специальным вентилятором в топку нагнетается воздух, подогретый отходящими газами, которые отсасываются из топки дымососом.

Жидкое топливо подается к горелкам непосредственно со склада в подогретом виде специальными насосами.


Подготовка газового топлива состоит в основном в регулировании давления газа перед сжиганием. Газ от месторождения или хранилища транспортируется по газопроводу к газораспределительному пункту (ГРП) станции. На ГРП осуществляется распределение газа и регулирование его параметров.

Процессы в пароводяном контуре

Основной пароводяного контур осуществляет следующие процессы:

  1. Горение топлива в топке сопровождается выделением тепла, которое нагревает воду, протекающую в трубах котла.
  2. Вода превращается в пар с давлением 13…25 МПа при температуре 540..560 °С.
  3. Пар, полученный в котле, подается в турбину, где совершает механическую работу - вращает вал турбины. Вследствие этого вращается и ротор генератора, находящийся на общем с турбиной валу.
  4. Отработанный в турбине пар с давлением 0,003…0,005 МПа при температуре 120…140°С поступаетв конденсатор, где превращается в воду, которая откачивается в деаэратор.
  5. В деаэраторе происходит удаление растворенных газов, и прежде всего кислорода, опасного ввиду своей коррозийной активности.Система циркуляционного водоснабжения обеспечивает охлаждение пара в конденсаторе водой из внешнего источника (водоема, реки, артезианской скважины). Охлажденная вода, имеющая на выходе из конденсатора температуру, не превышающую 25…36 °С, сбрасывается в систему водоснабжения.

Интересное видео о работе ТЭЦ можно посмотреть ниже:

Для компенсации потерь пара в основную пароводяную систему насосом подается подпиточная вода, предварительно прошедшая химическую очистку.

Следует отметить, что для нормальной работы пароводяных установок, особенно со сверх критическими параметрами пара, важное значение имеет качество воды, подаваемой в котел, поэтому турбинный конденсат пропускается через систему фильтров обессоливания. Система водоподготовки предназначена для очистки подпиточной и конденсатной воды, удаления из нее растворенных газов.

На станциях, использующих твердое топливо, продукты сгорания в виде шлака и золы удаляются из топки котлов специальной системой шлака- и золоудаления, оборудованной специальными насосами.

При сжигании газа и мазута такой системы не требуется.

На КЭС имеют место значительные потери энергии. Особенно велики потери тепла в конденсаторе (до 40..50 % общего количества тепла, выделяемого в топке), а также с отходящими газами (до 10 %). Коэффициент полезного действия современных КЭС с высокими параметрами давления и температуры пара достигает 42 %.

Электрическая часть КЭС представляет совокупность основного электрооборудования (генераторов, ) и электрооборудования собственных нужд, в том числе сборных шин, коммутационной и другой аппаратуры со всеми выполненными между ними соединениями.

Генераторы станции соединяются в блоки с повышающими трансформаторами без каких-либо аппаратов между ними.

В связи с этим на КЭС не сооружается распределительное устройство генераторного напряжения.

Распределительные устройства на 110-750 кВ в зависимости от количества присоединений, напряжения, передаваемой мощности и требуемого уровня надежности выполняются по типовым схемам электрических соединений. Поперечные связи между блоками имеют место только в распределительных устройствах высшего или в энергосистеме, а также по топливу, воде и пару.

В связи с этим каждый энергоблок можно рассматривать как отдельную автономную станцию.

Для обеспечения электроэнергией собственных нужд станции выполняются отпайки от генераторов каждого блока. Для питания мощных электродвигателей (200 кВт и более) используется генераторное напряжение, для питания двигателей меньшей мощности и осветительных установок - система 380/220 В. Электрические схемы собственных нужд станции могут быть различными.

Ещё одно интересное видео о работе ТЭЦ изнутри:

Теплоэлектроцентрали

Теплоэлектроцентрали, являясь источниками комбинированной выработки электрической и тепловой энергии, имеют значительно больший, чем КЭС, (до 75 %). Это объясняется тем. что часть отработавшего в турбинах пара используется для нужд промышленного производства (технологии), отопления, горячего водоснабжения.

Этот пар или непосредственно поступает для производственных и бытовых нужд или частично используется для предварительного подогрева воды в специальных бойлерах (подогревателях), из которых вода через теплофикационную сеть направляется потребителям тепловой энергии.

Основное отличие технологии производства энергии на в сравнении с КЭС состоит в специфике пароводяного контура. Обеспечивающего промежуточные отборы пара турбины, а также в способе выдачи энергии, в соответствии с которым основная часть ее распределяется на генераторном напряжении через генераторное распределительное устройство (ГРУ).

Связь с другими станциями энергосистемы выполняется на повышенном напряжении через повышающие трансформаторы. При ремонте или аварийном отключении одного генератора недостающая мощность может быть передана из энергосистемы через эти же трансформаторы.

Для увеличения надежности работы ТЭЦ предусматривается секционирование сборных шин.

Так, при аварии на шинах и последующем ремонте одной из секций вторая секция остается в работе и обеспечивает питание потребителей по оставшимся под напряжениям линиям.

По таким схемам сооружаются промышленные с генераторами до 60 мВт, предназначенные для питания местной нагрузки в радиусе 10 км.

На крупных современных применяются генераторы мощностью до 250 мВт при общей мощности станции 500-2500 мВт.

Такие сооружаются вне черты города и электроэнергия передается на напряжении 35-220 кВ, ГРУ не предусматривается, все генераторы соединяются в блоки с повышающими трансформаторами. При необходимости обеспечить питание небольшой местной нагрузки вблизи блочной предусматриваются отпайки от блоков между генератором и трансформатором. Возможны и комбинированные схемы станции, при которых на имеется ГРУ и несколько генераторов соединены по блочным схемам.

ТЭЦ — тепловая электростанция, которая производит не только электроэнергию, но и дает тепло в наши дома зимой. На примере Красноярской ТЭЦ посмотрим как работает почти любая теплоэлектростанция.

В Красноярске есть 3 теплоэлектроцентрали, суммарная электрическая мощность которых всего 1146 МВт (для сравнения, одна только наша Новосибирская ТЭЦ 5 имеет мощность 1200 МВт), но примечательна была для меня именно Красноярская ТЭЦ-3 тем, что станция новая - ещё не прошло и года, как первый и пока единственный энергоблок был аттестован Системным оператором и введён в промышленную эксплуатацию. Поэтому мне удалось поснимать ещё не запылившуюся, красивую станцию и узнать много нового для себя о ТЭЦ.

В этом посте, помимо технической информации о КрасТЭЦ-3, я хочу раскрыть сам принцип работы почти любой теплоэлектроцентрали.

1. Три дымовые трубы, высота самой высокой из них 275 м, вторая по высоте - 180м



Сама аббревиатура ТЭЦ подразумевает собой, что станция вырабатывает не только электричество, но и тепло (горячая вода, отопление), причем, выработка тепла возможно даже более приоритетна в нашей известной суровыми зимами стране.

2. Установленная электрическая мощность Красноярской ТЭЦ-3 208 МВт, а установленная тепловая мощность 631,5 Гкал/ч

Упрощенно принцип работы ТЭЦ можно описать следующим образом:

Всё начинается с топлива. В роли топлива на разных электростанциях могут выступать уголь, газ, торф, горючие сланцы. В нашем случае это бурый уголь марки Б2 с Бородинского разреза, расположенного в 162 км от станции. Уголь привозят по железной дороге. Часть его складируется, другая часть идёт по конвеерам в энергоблок, где сам уголь сначала измельчается до пыли и потом подаётся в камеру сгорания - паровой котёл.

Паровой котёл - это агрегат для получения пара с давлением выше атмосферного из непрерывно поступающей в него питательной воды. Происходит это засчет теплоты, выделяющейся при сгорании топлива. Сам котёл выглядит довольно внушительно. На КрасТЭЦ-3 высота котла 78 метров (26-этажный дом), а весит он более 7000 тонн.

6. Паровой котёл марки Еп-670, произведенный в Таганроге. Производительность котла 670 тонн пара в час

Я позаимствовал с сайта energoworld.ru упрощённую схему парового котла электростанции, чтобы вам было понятно его устройтсво

1 — топочная камера (топка); 2 — горизонтальный газоход; 3 — конвективная шахта; 4 — топочные экраны; 5 — потолочные экраны; 6 — спускные трубы; 7 — барабан; 8 — радиационно-конвективный пароперегреватель; 9 — конвективный пароперегреватель; 10 — водяной экономайзер; 11 — воздухоподогреватель; 12 — дутьевой вентилятор; 13 — нижние коллекторы экранов; 14 — шлаковый комод; 15 — холодная коронка; 16 — горелки. На схеме не показаны золоуловитель и дымосос.

7. Вид сверху

10. Отчётливо виден барабан котла. Барабан представляет собой цилиндрический горизонтальный сосуд, имеющий водяной и паровой объемы, которые разделяются поверхностью, называемой зеркалом испарения.

Благодаря большой паропроизводительности котёл имеет развитые поверхности нагрева, как испарительные, так и пароперегревательные. Топка у него призматическая, четырёхугольная с естественной циркуляцией.

Пара слов о принципе работы котла:

В барабан, проходя экономайзер, попадает питательная вода, по спускным трубам спускается в нижние коллекторы экранов из труб, по этим трубам вода поднимается вверх и, соответственно, нагревается, так как внутри топки горит факел. Вода превращается в паро-водяную смесь, часть её попадает в выносные циклоны и другая часть обратно барабан. И там, и там происходит разделение этой смеси на воду и пар. Пар уходит в пароперегреватели, а вода повторяет свой путь.

11. Остывшие дымовые газы (примерно 130 градусов), выходят из топки в электрофильтры. В электрофильтрах происходит очистка газов от золы, зола удаляется на золоотвал, а очищенные дымовые газы уходят в атмосферу. Эффективная степень очистки дымовых газов составляет 99,7%.
На фотографии те самые электрофильтры.

Проходя через пароперегреватели пар нагревается до температуры 545 градусов и поступает в турбину, где под его давлением вращается ротор турбогенератора и, соответственно, вырабатывается электроэнергия. Следует отметить, что в конденсационных электростанциях (ГРЭС) система обращения воды полностью замкнута. Весь пар, проходя сквозь турбину, охлаждается и конденсируется. Снова превратившись в жидкое состояние, вода используется заново. А в турбинах ТЭЦ не весь пар попадает в конденсатор. Осуществляются отборы пара - производственные (использование горячего пара на каких-либо производствах) и теплофикационные (сеть горячего водоснабжения). Это делает ТЭЦ экономически более выгодной, но у неё есть свои минусы. Недостатком теплоэлектроцентралей является то, что они должны быть построены недалеко от конечного потребителя. Прокладка теплотрасс стоит огромных денег.

12. На Красноярской ТЭЦ-3 используется прямоточная система технического водоснабжения, это позволяет отказаться от использование градирен. То есть воду для охлаждения конденсатора и использования в котле берут прямо из Енисея, но перед этим она проходит очистку и обессоливание. После использования вода возвращается по каналу обратно в Енисей, проходя систему рассеивающего выпуска (перемешивание нагретой воды с холодной, дабы снизить тепловое загрязнение реки)

14. Турбогенератор

Я надеюсь, мне удалось внятно описать принцип работы ТЭЦ. Теперь немного о самой КрасТЭЦ-3.

Строительство станции началось ещё в далёком 1981 году, но, как у нас в России бывает, из-за развалов СССР и кризисов построить ТЭЦ вовремя не получилось. С 1992 г до 2012 г станция работала как котельная - нагревала воду, но электричество вырабатывать научилась только 1-го марта прошлого года.

Красноярская ТЭЦ-3 принадлежит Енисейской ТГК-13. На ТЭЦ работает около 560 человек. В настоящее время Красноярская ТЭЦ-3 обеспечивает теплоснабжение промышленных предприятий и жилищно-коммунального сектора Советского района г. Красноярска - в частности, микрорайоны «Северный», «Взлётка», «Покровский» и «Иннокентьевский».

17.

19. ЦПУ

20. Ещё на КрасТЭЦ-3 функционируют 4 водогрейных котла

21. Глазок в топке

23. А это фото снято с крыши энергоблока. Большая труба имеет высоту 180м, та что поменьше - труба пусковой котельной.

24. Трансформаторы

25. В качестве распределительного устройства на КрасТЭЦ-3 используется закрытое распределительное устройство с элегазовой изоляцией (ЗРУЭ) на 220 кВ.

26. Внутри здания

28. Общий вид распределительного устройства

29. На этом всё. Спасибо за внимание