Тригонометрические ряды фурье. Ряды фурье и их применение в технике связи

Ряд Фурье записывается в виде:

, где k – номер гармоники.

Коэффициенты Фурье для этого ряда находятся по формулам:

Периодические сигналы представляются рядом Фурье в виде:

, где - основная частота;

Здесь коэффициенты рассчитываются по формулам:

Часто используется другая форма записи ряда Фурье:

, где:

– амплитуда k -ой гармоники; - начальная фаза

Для удобства расчетов ряд Фурье записывается в комплексной форме:

Графическое временное и частотное изображения

Спектра периодического сигнала

временное изображение

(f )
частотное изображение АЧС

Аналогично ФЧС, только учитывая, что фазы могут быть и отрицательными.

Такой спектр называется дискретным или линейчатым, он характерен для периодического сигнала.

Спектр последовательности прямоугольных импульсов

Рассмотрим симметричное расположение импульсов


, где - скважность.


Найдем нулевые точки синуса:

Первая нулевая точка – самая важная для спектра последовательности прямоугольных импульсов.

АЧС последовательности прямоугольных импульсов:


ω 1 ω 2 2π/t u 4π/t u

Основную долю энергии несут гармоники, расположенные от 0 до первой нулевой точки (около 90% энергии). Эту область частот, где сосредоточено 90% энергии сигнала, называют шириной спектра (частотного) сигнала.

Для прямоугольного импульса ширина спектра - .

Любая цифровая передача сигнала требует большего спектра, чем простая аналоговая.

ФЧС последовательности прямоугольных импульсов:

если sun(x)>0, то Ψ k =0

если sin(x)<0, то Ψ k = π

Влияние длительности импульса и периода на вид спектра

Если длительность уменьшается, то основная частота не изменится, нулевые точки переместятся вправо. До первой нулевой точки, где сосредоточена основная энергия, попадает больше составляющих. Технически отмечают, что спектр расширяется.

Если же длительность импульса возрастает, то происходит сужение спектра.

Если период повторения увеличивается, то уменьшается основная частота. Если период повторения уменьшается, то основная частота увеличивается.

Изменение положения импульса или начала отсчета

Это не влияет на АЧС, при этом изменяется только фазовый спектр. Это можно отразить на основе теоремы запаздывания:


Фазовый спектр смещенного сигнала при N=4 :

Понятие о расчете цепей при периодических сигналах

Методика расчета:

1. Определяется комплексный спектр периодического сигнала;

2. Оценивается спектр, оставляют наиболее значащие гармоники (первый критерий: отсекаются все, который составляют менее 0,1 от максимальной по величине амплитуды гармоники);

Рассчитываются токи и напряжения от каждой составляющей в отдельности. Можно использовать комплексный метод расчета.

I 0 =0

Оценить негармоническую функцию можно по действующему значению, т.е. среднеквадратичному за период:


Понятие о спектре непериодического сигнала

Непериодические сигналы являются самыми важными, так как именно они несут информацию. Периодические сигналы являются служебными для передачи информации, а новой информации не несут. Поэтому возникает вопрос спектров непериодических сигналов. Их можно попробовать получить предельным переходом из периодических сигналов, устремив период к бесконечности (). Остается одиночный сигнал. Найдем комплексную амплитуду спектра одиночного сигнала: при .

,

Непериодический сигнал можно разбить на бесконечную сумму гармонических составляющих с бесконечно малыми амплитудами и отличающихся по частоте на бесконечно малые величины – Это называется сплошным спектром не периодического сигнала, а не дискретным. Для расчетов используют понятие не комплексных амплитуд, и комплексной спектральной плотности амплитуд - величины амплитуды, приходящейся на единицу частоты.

Это прямое преобразование Фурье (двухстороннее).

Во многих случаях задача получения (вычисления) спектра сигнала выглядит следующим образом. Имеется АЦП, который с частотой дискретизации Fd преобразует непрерывный сигнал, поступающий на его вход в течение времени Т, в цифровые отсчеты - N штук. Далее массив отсчетов подается в некую программку, которая выдает N/2 каких-то числовых значений (программист, который утянул из инета написал программку, уверяет, что она делает преобразование Фурье).

Чтобы проверить, правильно ли работает программа, сформируем массив отсчетов как сумму двух синусоид sin(10*2*pi*x)+0,5*sin(5*2*pi*x) и подсунем программке. Программа нарисовала следующее:

рис.1 График временной функции сигнала


рис.2 График спектра сигнала

На графике спектра имеется две палки (гармоники) 5 Гц с амплитудой 0.5 В и 10 Гц - с амплитудой 1 В, все как в формуле исходного сигнала. Все отлично, программист молодец! Программа работает правильно.

Это значит, что если мы подадим на вход АЦП реальный сигнал из смеси двух синусоид, то мы получим аналогичный спектр, состоящий из двух гармоник.

Итого, наш реальный измеренный сигнал, длительностью 5 сек , оцифрованный АЦП, то есть представленный дискретными отсчетами, имеет дискретный непериодический спектр.

С математической точки зрения - сколько ошибок в этой фразе?

Теперь начальство решило мы решили, что 5 секунд - это слишком долго, давай измерять сигнал за 0.5 сек.



рис.3 График функции sin(10*2*pi*x)+0,5*sin(5*2*pi*x) на периоде измерения 0.5 сек


рис.4 Спектр функции

Что-то как бы не то! Гармоника 10 Гц рисуется нормально, а вместо палки на 5 Гц появилось несколько каких-то непонятных гармоник. Смотрим в интернетах, что да как…

Во, говорят, что в конец выборки надо добавить нули и спектр будет рисоваться нормальный.


рис.5 Добили нулей до 5 сек


рис.6 Получили спектр

Все равно не то, что было на 5 секундах. Придется разбираться с теорией. Идем в Википедию - источник знаний.

2. Непрерывная функция и представление её рядом Фурье

Математически наш сигнал длительностью T секунд является некоторой функцией f(x), заданной на отрезке {0, T} (X в данном случае - время). Такую функцию всегда можно представить в виде суммы гармонических функций (синусоид или косинусоид) вида:

(1), где:

K - номер тригонометрической функции (номер гармонической составляющей, номер гармоники)
T - отрезок, где функция определена (длительность сигнала)
Ak - амплитуда k-ой гармонической составляющей,
θk- начальная фаза k-ой гармонической составляющей

Что значит «представить функцию в виде суммы ряда»? Это значит, что, сложив в каждой точке значения гармонических составляющих ряда Фурье, мы получим значение нашей функции в этой точке.

(Более строго, среднеквадратичное отклонение ряда от функции f(x) будет стремиться к нулю, но несмотря на среднеквадратичную сходимость, ряд Фурье функции, вообще говоря, не обязан сходиться к ней поточечно. См. https://ru.wikipedia.org/wiki/Ряд_Фурье .)

Этот ряд может быть также записан в виде:

(2),
где , k-я комплексная амплитуда.

Связь между коэффициентами (1) и (3) выражается следующими формулами:

Отметим, что все эти три представления ряда Фурье совершенно равнозначны. Иногда при работе с рядами Фурье бывает удобнее использовать вместо синусов и косинусов экспоненты мнимого аргумента, то есть использовать преобразование Фурье в комплексной форме. Но нам удобно использовать формулу (1), где ряд Фурье представлен в виде суммы косинусоид с соответствующими амплитудами и фазами. В любом случае неправильно говорить, что результатом преобразования Фурье действительного сигнала будут комплексные амплитуды гармоник. Как правильно говорится в Вики «Преобразование Фурье (ℱ) - операция, сопоставляющая одной функции вещественной переменной другую функцию, также вещественной переменной.»

Итого:
Математической основой спектрального анализа сигналов является преобразование Фурье.

Преобразование Фурье позволяет представить непрерывную функцию f(x) (сигнал), определенную на отрезке {0, T} в виде суммы бесконечного числа (бесконечного ряда) тригонометрических функций (синусоид и\или косинусоид) с определёнными амплитудами и фазами, также рассматриваемых на отрезке {0, T}. Такой ряд называется рядом Фурье.

Отметим еще некоторые моменты, понимание которых требуется для правильного применения преобразования Фурье к анализу сигналов. Если рассмотреть ряд Фурье (сумму синусоид) на всей оси Х, то можно увидеть, что вне отрезка {0, T} функция представленная рядом Фурье будет будет периодически повторять нашу функцию.

Например, на графике рис.7 исходная функция определена на отрезке {-T\2, +T\2}, а ряд Фурье представляет периодическую функцию, определенную на всей оси х.

Это происходит потому, что синусоиды сами являются периодическими функциями, соответственно и их сумма будет периодической функцией.


рис.7 Представление непериодической исходной функции рядом Фурье

Таким образом:

Наша исходная функция - непрерывная, непериодическая, определена на некотором отрезке длиной T.
Спектр этой функции - дискретный, то есть представлен в виде бесконечного ряда гармонических составляющих - ряда Фурье.
По факту, рядом Фурье определяется некоторая периодическая функция, совпадающая с нашей на отрезке {0, T}, но для нас эта периодичность не существенна.

Периоды гармонических составляющих кратны величине отрезка {0, T}, на котором определена исходная функция f(x). Другими словами, периоды гармоник кратны длительности измерения сигнала. Например, период первой гармоники ряда Фурье равен интервалу Т, на котором определена функция f(x). Период второй гармоники ряда Фурье равен интервалу Т/2. И так далее (см. рис. 8).


рис.8 Периоды (частоты) гармонических составляющих ряда Фурье (здесь Т=2π)

Соответственно, частоты гармонических составляющих кратны величине 1/Т. То есть частоты гармонических составляющих Fk равны Fk= к\Т, где к пробегает значения от 0 до ∞, например к=0 F0=0; к=1 F1=1\T; к=2 F2=2\T; к=3 F3=3\T;… Fk= к\Т (при нулевой частоте - постоянная составляющая).

Пусть наша исходная функция, представляет собой сигнал, записанный в течение Т=1 сек. Тогда период первой гармоники будет равен длительности нашего сигнала Т1=Т=1 сек и частота гармоники равна 1 Гц. Период второй гармоники будет равен длительности сигнала, деленной на 2 (Т2=Т/2=0,5 сек) и частота равна 2 Гц. Для третьей гармоники Т3=Т/3 сек и частота равна 3 Гц. И так далее.

Шаг между гармониками в этом случае равен 1 Гц.

Таким образом сигнал длительностью 1 сек можно разложить на гармонические составляющие (получить спектр) с разрешением по частоте 1 Гц.
Чтобы увеличить разрешение в 2 раза до 0,5 Гц - надо увеличить длительность измерения в 2 раза - до 2 сек. Сигнал длительностью 10 сек можно разложить на гармонические составляющие (получить спектр) с разрешением по частоте 0,1 Гц. Других способов увеличить разрешение по частоте нет.

Существует способ искусственного увеличения длительности сигнала путем добавления нулей к массиву отсчетов. Но реальную разрешающую способность по частоте он не увеличивает.

3. Дискретные сигналы и дискретное преобразование Фурье

С развитием цифровой техники изменились и способы хранения данных измерений (сигналов). Если раньше сигнал мог записываться на магнитофон и храниться на ленте в аналоговом виде, то сейчас сигналы оцифровываются и хранятся в файлах в памяти компьютера в виде набора чисел (отсчетов).

Обычная схема измерения и оцифровки сигнала выглядит следующим образом.


рис.9 Схема измерительного канала

Сигнал с измерительного преобразователя поступает на АЦП в течение периода времени Т. Полученные за время Т отсчеты сигнала (выборка) передаются в компьютер и сохраняются в памяти.


рис.10 Оцифрованный сигнал - N отсчетов полученных за время Т

Какие требования выдвигаются к параметрам оцифровки сигнала? Устройство, преобразующее входной аналоговый сигнал в дискретный код (цифровой сигнал) называется аналого-цифровой преобразователь (АЦП, англ. Analog-to-digital converter, ADC) (Wiki).

Одним из основных параметров АЦП является максимальная частота дискретизации (или частота семплирования, англ. sample rate) - частота взятия отсчетов непрерывного во времени сигнала при его дискретизации. Измеряется в герцах. ((Wiki))

Согласно теореме Котельникова, если непрерывный сигнал имеет спектр, ограниченный частотой Fмакс, то он может быть полностью и однозначно восстановлен по его дискретным отсчетам, взятым через интервалы времени , т.е. с частотой Fd ≥ 2*Fмакс, где Fd - частота дискретизации; Fмакс - максимальная частота спектра сигнала. Другими слова частота оцифровки сигнала (частота дискретизации АЦП) должна как минимум в 2 раза превышать максимальную частоту сигнала, который мы хотим измерить.

А что будет, если мы будем брать отсчеты с меньшей частотой, чем требуется по теореме Котельникова?

В этом случае возникает эффект «алиасинга» (он же стробоскопический эффект, муаровый эффект), при котором сигнал высокой частоты после оцифровки превращается в сигнал низкой частоты, которого на самом деле не существует. На рис. 11 красная синусоида высокой частоты - это реальный сигнал. Синяя синусоида более низкой частоты - фиктивный сигнал, возникающий вследствие того, за время взятия отсчета успевает пройти больше, чем пол-периода высокочастотного сигнала.


Рис. 11. Появление ложного сигнала низкой частоты при недостаточно высокой частоте дискретизации

Чтобы избежать эффекта алиасинга перед АЦП ставят специальный антиалиасинговый фильтр - ФНЧ (фильтр нижних частот), который пропускает частоты ниже половины частоты дискретизации АЦП, а более высокие частоты зарезает.

Для того, чтобы вычислить спектр сигнала по его дискретным отсчетам используется дискретное преобразование Фурье (ДПФ). Отметим еще раз, что спектр дискретного сигнала «по определению» ограничен частотой Fмакс, меньшей половине частоты дискретизации Fd. Поэтому спектр дискретного сигнала может быть представлен суммой конечного числа гармоник, в отличие от бесконечной суммы для ряда Фурье непрерывного сигнала, спектр которого может быть неограничен. Согласно теореме Котельникова максимальная частота гармоники должна быть такой, чтобы на нее приходилось как минимум два отсчета, поэтому число гармоник равно половине числа отсчетов дискретного сигнала. То есть если в выборке имется N отсчетов, то число гармоник в спектре будет равно N/2.

Рассмотрим теперь дискретное преобразование Фурье (ДПФ).

Сравнивая с рядом Фурье

Видим, что они совпадают, за исключением того, что время в ДПФ имеет дискретный характер и число гармоник ограничено величиной N/2 - половиной числа отсчетов.

Формулы ДПФ записываются в безразмерных целых переменных k, s, где k – номера отсчетов сигнала, s – номера спектральных составляющих.
Величина s показывает количество полных колебаний гармоники на периоде Т (длительности измерения сигнала). Дискретное преобразование Фурье используется для нахождения амплитуд и фаз гармоник численным методом, т.е. «на компьютере»

Возвращаясь к результатам, полученным в начале. Как уже было сказано выше, при разложении в ряд Фурье непериодической функции (нашего сигнала), полученный ряд Фурье фактически соответствует периодической функции с периодом Т. (рис.12).


рис.12 Периодическая функция f(x) с периодом Т0, с периодом измерения Т>T0

Как видно на рис.12 функция f(x) периодическая с периодом Т0. Однако из-за того, что длительность измерительной выборки Т не совпадает с периодом функции Т0, функция, получаемая как ряд Фурье, имеет разрыв в точке Т. В результате спектр данной функции будет содержать большое количество высокочастотных гармоник. Если бы длительность измерительной выборки Т совпадала с периодом функции Т0, то в полученном после преобразования Фурье спектре присутствовала бы только первая гармоника (синусоида с периодом равным длительности выборки), поскольку функция f(x) представляет собой синусоиду.

Другими словами, программа ДПФ «не знает», что наш сигнал представляет собой «кусок синусоиды», а пытается представить в виде ряда периодическую функцию, которая имеет разрыв из-за нестыковки отдельных кусков синусоиды.

В результате в спектре появляются гармоники, которые должны в сумме изобразить форму функции, включая этот разрыв.

Таким образом, чтобы получить «правильный» спектр сигнала, являющегося суммой нескольких синусоид с разными периодами, необходимо чтобы на периоде измерения сигнала укладывалось целое число периодов каждой синусоиды. На практике это условие можно выполнить при достаточно большой длительности измерения сигнала.


Рис.13 Пример функции и спектра сигнала кинематической погрешности редуктора

При меньшей длительности картина будет выглядеть «хуже»:


Рис.14 Пример функции и спектра сигнала вибрации ротора

На практике бывает сложно понять, где «реальные составляющие», а где «артефакты», вызванные некратностью периодов составляющих и длительности выборки сигнала или «скачками и разрывами» формы сигнала. Конечно слова «реальные составляющие» и «артефакты» не зря взяты в кавычки. Наличие на графике спектра множества гармоник не означает, что наш сигнал в реальности из них «состоит». Это все равно что считать, будто число 7 «состоит» из чисел 3 и 4. Число 7 можно представить в виде суммы чисел 3 и 4 - это правильно.

Так и наш сигнал… а вернее даже не «наш сигнал», а периодическую функцию, составленную путем повторения нашего сигнала (выборки) можно представить в виде суммы гармоник (синусоид) с определенными амплитудами и фазами. Но во многих важных для практики случаях (см. рисунки выше) действительно можно связать полученные в спектре гармоники и с реальными процессами, имеющими циклический характер и вносящими значительный вклад в форму сигнала.

Некоторые итоги

1. Реальный измеренный сигнал, длительностью T сек, оцифрованный АЦП, то есть представленный набором дискретных отсчетов (N штук), имеет дискретный непериодический спектр, представленный набором гармоник (N/2 штук).

2. Сигнал представлен набором действительных значений и его спектр представлен набором действительных значений. Частоты гармоник положительны. То, что математикам бывает удобнее представить спектр в комплексной форме с использованием отрицательных частот не значит, что «так правильно» и «так всегда надо делать».

3. Сигнал, измеренный на отрезке времени Т определен только на отрезке времени Т. Что было до того, как мы начали измерять сигнал, и что будет после того - науке это неизвестно. И в нашем случае - неинтересно. ДПФ ограниченного во времени сигнала дает его «настоящий» спектр, в том смысле, что при определенных условиях позволяет вычислить амплитуду и частоту его составляющих.

Использованные материалы и другие полезные материалы.

1

Возможности приближения рядов Фурье в случае линейного сигнала бывает необходимым для построения функций в случае разрывных периодических элементов. Возможности использования данного метода для построения и разложения их с использованием конечных сумм ряда Фурье использующих при решении многих задач различных наук, таких как физики, сейсмологии и так далее. Процессы океанских приливов, солнечной активности рассматриваются способом разложения колебательных процессов, функций описываемых эти преобразования. С развитием компьютерных технологий ряды Фурье стали применяться для более и более сложных задач, а так же благодаря этому стало возможным использование данных преобразований в косвенных науках, таких как медицина, химия. Преобразование Фурье описывается как в действительной, так и в комплексной форме, второе распределение дало возможность произвести прорыв в исследовании космического пространства. Результатом данной работы является применение рядов Фурье к линеаризации разрывной функции и подбором количества коэффициентов ряда для более точного наложения ряда на функцию. Причем, при использовании разложения в ряд Фурье, данная функция перестает быть разрывной и уже при достаточно малых, осуществляется хорошее приближение используемой функции.

ряд фурье

преобразование фурье

фазовый спектр.

1. Алашеева Е.А., Рогова Н.В. Численный метод решения задачи электродинамики в тонкопроволочном приближении. Наука и мир. Международный научный журнал, № 8(12), 2014. Том 1. г. Волгоград. С.17-19.

2. Воробьев Н.Н. Теория рядов. Изд. Наука, Главная редакция физико-математической литературы, М., 1979, -408 С.

3. Калинина В.Н., Панкин В.Ф. Математическая статистика. - М.: Высшая школа, 2001.

4. Р.Эдвардс Ряды Фурье в современном изложении. Изд. Мир. В 2 томах. Том 1. 1985 год. 362 стр.

5. Сигорский В.П. Математический аппарат инженера. Изд. 2-е стереотипное. «Технiка»,1997. – 768 с.

Представление произвольно взятой функции с конкретным периодом в виде ряда называется рядом Фурье. Разложением по ортогональному базису называют данное решение в общем виде. Разложение функций в ряд Фурье является довольно мощным инструментом при решении разнообразных задач. Т.к. хорошо известны и изучены свойства данного преобразования при интегрировании, дифференцировании, а также сдвиге выражения по аргументу и свертке . Человек, не знакомый с высшей математикой, а также с трудами французского ученого Фурье, скорее всего, не поймет, что это за «ряды» и для чего они нужны. Данное преобразование Фурье очень плотно вошло в нашу жизнь. Им пользуются не только математики, но и физики, химики, медики, астрономы, сейсмологи, океанографы и многие другие.

Ряды Фурье используются при решении многих прикладных задач. Преобразование Фурье можно проводить аналитическими, числительными и другими методами. Такие процессы как океанские приливы и световые волны до циклов солнечной активности относятся к числительному способу разложения любых колебательных процессов в ряд Фурье. Используя эти математические приемы, можно разбирать функции, представляя любые колебательные процессы в качестве ряда синусоидальных составляющих, которые переходят от минимума к максимуму и обратно. Преобразование Фурье является функцией, описывающей фазу и амплитуду синусоид, соответствующих определенной частоте. Данное преобразование используется для решения весьма сложных уравнений, которые описывают динамические процессы, возникающие под действием тепловой, световой или электрической энергии. Также ряды Фурье позволяют выделять постоянные составляющие в сложных колебательных сигналах, благодаря чему стало возможным правильно интерпретировать полученные экспериментальные наблюдения в медицине, химии и астрономии .

С ростом технологий, т.е. появление и развития компьютера, вывело преобразование Фурье на новый уровень. Данная методика прочно закрепилась практически во всех сферах науки и техники. В качестве примера можно привести цифровой аудио- и видеосигнал. Который стал наглядной реализацией роста научного процесса и применения рядов Фурье. Так, ряд Фурье в комплексной форме позволил совершить прорыв в изучении космического пространства. Кроме того, это повлияло на изучение физики полупроводниковых материалов и плазмы, микроволновой акустики, океанографии, радиолокации, сейсмологии .

Рассмотрим фазовый спектр периодического сигнала определяется из следующего выражения:

где символами и соответственно обозначены мнимая и действительная части величины, заключенной в квадратные скобки.

Если умножить на действительную постоянную величину K, то разложение в ряд Фурье имеет следующий вид:

Из выражения (1) следует, что фазовый Фурье-спектр обладает следующими свойствами:

1) является функцией , т. е. в отличие от спектра мощности, который не зависит от , , изменяется при сдвиге сигнала вдоль оси времени;

2) не зависит от К, т. е. инвариантен к усилению или ослаблению сигнала, в то время как спектр мощности является функцией К.

3) т. е. является нечетной, функцией n.

Примечание. С учетом геометрической интерпретации приведенных выше рассуждений, можно выразить через спектр мощности и фазовый спектр следующим образом:

Поскольку

то из (2) и (3) следует, что может быть восстановлен однозначно, если известны амплитудный (или спектр мощности) и фазовый спектры.

Рассмотрим пример. Нам дана функция на промежутке

Общий вид ряда Фурье:

Подставим свои значения и получим:

Подставим свои значения и получим.

В главе 10 описывалось применение рядов Фурье к исследованию упругих колебаний струны. В данной главе мы рассмотрим некоторые вопросы упругого изгиба балок.

Использование рядов Фурье для решения задач статики упругих тел производится по следующей схеме.

Прежде всего из физических соображений выводится соотношение, которое связывает функцию, описывающую геометрическое состояние деформированного тела, с приложенными к телу нагрузками. Это соотношение, вообще говоря, содержит, помимо самой функции состояния, еще и ее производные, а также некоторые интегральные характеристики.

Затем, исходя из геометрических очертаний тела и кинематических условий, ограничивающих его перемещения, выбирается ортогональная система функций, по которой указанная функция состояния разлагается в ряд Фурье.

Подстановка этого ряда Фурье в выведенное соотношение приводит к тождественному равенству двух рядов Фурье, от которого, пользуясь теоремой 2 § 14 главы 9, можно перейти к равенству коэффициентов при одинаковых функциях. Из этих последних равенств можно вычислить значения коэффициентов Фурье и тем самым описать состояние деформированного тела.

Этот процесс подстановки ряда Фурье в характеризующее изгиб соотношение следует осуществлять достаточно осмотрительно, ибо в ходе его приходится несколько раз почленно дифференцировать ряды Фурье, коэффициенты которых вычисляются лишь впоследствии. Убедиться в правомерности этого дифференцирования, т. е. (см. § 10 главы 5) в равномерной сходимости ряда, составленного

из производных членов дифференцируемого ряда, априори довольно затруднительно. Поэтому при решении каждой конкретной задачи мы будем рассуждать примерно следующим образом.

Сначала мы будем предполагать, что написанный с неизвестными пока коэффициентами ряд Фурье можно (в смысле теоремы § 10 главы 5) почленно дифференцировать нужное число раз. Выписывая производные и решая получающиеся уравнения, мы будем находить интересующие нас коэффициенты Фурье. Это будет означать, что если ряд Фурье поддается почленному дифференцированию (и притом столько раз, сколько это требуется), то он является вполне определенным, найденным нами рядом. Если теперь из рассмотрения полученных коэффициентов будет видно, что этот построенный, вполне определенный ряд действительно почленно дифференцируем, то все операции, проделанные фактически именно над этим рядом, были законными, и найденные коэффициенты Фурье - искомые. Если же окажется, что получился недифференцируемый ряд, то это значит, что проделанные с ним ранее действия были математически некорректными, а полученный на их основе результат - необоснованным, хотя, возможно, и верным. Далее мы познакомимся с примерами исходов обоих типов.

Ряды Фурье и их применение в технике связи

Наименование параметра Значение
Тема статьи: Ряды Фурье и их применение в технике связи
Рубрика (тематическая категория) Образование

Разложение непрерывного сигнала в ортогональные ряды

Лекция 6. Непрерывный канал

Критерии качества восстановления.

Существуют следующие критерии:

1) Критерий наибольшего отклонения

где: допускаемая погрешность восстановления, - max значение - текущая погрешность приближения.

При этом имеется уверенность, что любые изменения исходного сигнала, включая кратковременные выбросы будут зафиксированы.

2) Критерий СКЗ. где: - дополнительная СК погрешность приближения, - СК погрешность приближения.

3) Интегральный критерий

Определяется max среднее значение за период дискретизации.

4) Вероятностный критерий

Задаётся допустимый уровень, величина Р – вероятности того, что текущая погрешность приближения не зависит от некоторого определённого значения.

Цель лекции: ознакомление c непрерывным каналом

а) разложение непрерывного сигнала в ортогональные ряды;

б) Ряды Фурье и их применение в технике связи;

в) теорема Котельникова (Основная теорема Шеннона);

г) пропускная способность непрерывного канала;

д) модель НКС.

В теории связи для представления сигналов широко используются два частных случая разложения функций в ортогональные ряды: разложение по тригонометрическим функциям и разложение по функциям вида sin x/x. В первом случае получаем спектральное представление сигнала в виде обычного ряда Фурье, а во втором случае – временное представление в виде ряда В.А. Котельникова.

Простейшей с практической точки зрения формой выражения сигнала является линœейная комбинация некоторых элементарных функций

В общем случае, сигнал представляет собой сложное колебание, в связи с этим возникает крайне важно сть представить сложную функцию s(t), определяющую сигнал, через простые функции.

При изучении линœейных систем такое представление сигнала весьма удобно. Оно позволяет решение многих задач расчленить на части, применяя принцип суперпозиции. К примеру, чтобы определить сигнал на выходе линœейной системы, вычисляется реакция системы на каждое элементарное воздействие ψ k (t), а затем результаты, умноженные на соответствующие коэффициенты а k легко вычислялись и не зависели от числа членов суммы. Указанным требованиям наиболее полно удовлетворяет совокупность ортогональных функций.

Функции ψ 1 (t), ψ 2 (t), . . . . , ψ n (t) . (6.2)

Заданные на интервале, называются ортогональными,

если при. (6.3)

Основой спектрального анализа сигналов является представление функций времени в виде ряда или интеграла Фурье. Любой периодический сигнал s(t), удовлетворяющий условию Дирихле, должна быть представлен в виде ряда по тригонометрическим функциям

Величина а 0, выражающая среднее значение сигнала за период, принято называть постоянной составляющей. Она вычисляется по формуле

Весьма удобной является комплексная форма записи ряда Фурье

Величина A k есть комплексная амплитуда, она находится по формуле

Соотношения (6.8) и (6.9) составляют пару дискретных преобразований Фурье. Необходимо отметить, что рядом Фурье можно представить не только периодический сигнал, но и любой сигнал конечной длительности. В последнем случае сигнал S(t ) принимается периодически продолженным на всœей оси времени. При этом равенство (6.4) или (6.8) представляет сигнал только на интервале его длительности (-Т/2,Т/2 ). Случайный сигнал (или помеха), заданный на интервале (-Т/2,Т/2 ), должна быть также представлен рядом Фурье

где a k и b k являются случайными величинами (для флуктационной помехи – независимыми случайными с нормальным распределœением) .

Ряды Фурье и их применение в технике связи - понятие и виды. Классификация и особенности категории "Ряды Фурье и их применение в технике связи" 2017, 2018.